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Introduction

Definitions Needed..

Let..

Hn
R denotes the n-dimensional (real) hyperbolic space and we denote

M(n) to be the (orientation-preserving) Möbius group that acts on Hn+1
R

by isometries. So in the previous case M(2) can be identified with the
linear group SL(2,C) that acts on the three dimensional hyperbolic space
by the linear fractional transformations.

Generally speaking..

....Hn
F be the n-dimensional hyperbolic space over F, where F = R, C or

the Hamilton’s quaternions H Let U(n, 1;F) the unitary group that acts
on Hn

F by isometries. For simplicity of notations, U(n, 1;R) will be
considered as the identity component of the full isometry group. Following
standard notation, we denote U(n, 1;R) = PO(n, 1).

Dr.Abhishek Mukherjee Discreteness Of Subgroups by Test Maps in Higher DimensionOctober 3, 2020 7 / 49



Introduction

Elementary Groups in U(n, 1;F)..

Definition..

Let G be a subgroup of U(n, 1;F) and let p ∈ Hn
R ∪ ∂Hn

R. Define
Gp = {A ∈ G : A(p) = p} to be the stabilizer of p in G. Also a G−orbit is
a set defined by G(p) = {A(p) : A ∈ G}, for some p ∈ Hn

R ∪ ∂Hn
R .

A subgroup G of PSL(2,C) is called elementary if Hn
R ∪ ∂Hn

R contains a
finite G−orbit. Otherwise G is called non-elementary.
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Introduction

Basic Motivatory Results..

...

The familiar result that has been motivated us to study analogous
aspects in our concerned group along this line of investigation is..

Let’s have a look on this.
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Introduction

Jørgensen’s Theorem on Discreteness in SL(2,C)..

Significance of two-generator Subgroups: Jørgensen’s Theorem..

A non-elementary group G of PSL(2,C) is discrete if and only if its
two-generator subgroups are discrete .
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Introduction

Our Work...

...

Now we enter into the discussion on our results obtained so far.
To begin with let us first depict some overviews and preliminaries to

introduce the Hyperbolic (n+ 2)−space and its
orientation-preserving isometry group SL(2, Cn).
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Introduction

MY PRIMARY AIM..

My primary aim in this talk is to focus on some interesting ideas to
test discreteness of a Zariski dense subgroup G of SL(2, Cn), n ≥ 0,

which will be determined by two generator discrete subgroups in
SL(2, Cn), having one isometry from the group and another suitable

isometry from SL(2, Cn)(need not be in the group) that influence
the discreteness of the whole group in view of certain generalisations

of Jørgensen inequality for two-generator subgroups in SL(2, Cn),
that has been formulated and those results will be used in this work.
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Preliminaries

Preliminaries:- The Clifford Algebra

Definition

The Clifford algebra Cn, n ≥ 0, is the real associative algebra which
has been generated by n symbols i1, i2, · · · , in subject to the
following relations:

itis = −isit , for t 6= s and i2t = −1 .

Let us define i0 = 1 and then every element of Cn can be expressed
uniquely in the form a =

∑
aII , where the sum is over all products

I = iv1iv2 · · · ivk ,with 1 ≤ v1 < v2 < · · · < vk ≤ n and aI ∈ R. Here
the null product is permitted and identified with the real number 1.
We equip Cn with the Euclidean norm. Thus C0 = R, C1 = C,
C2 = H etc.
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Preliminaries

Important Involutions in Cn

Let us have a look..

The following are involutions in Cn:

∗: In a ∈ Cn as above, replace in each I = iv1iv2 · · · ivk by ivk · · · iv1.
a 7→ a∗ is an anti-automorphism.

′: Replace ik by −ik in a to obtain a′.

The conjugate ā of a is now defined as: ā = (a∗)′ = (a′)∗.
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Preliminaries

Some Definitions :

Clifford Vectors :

Let us identify Rn+1 with the (n+ 1)−dimensional subspace of Cn
formed by the Clifford numbers of the form
v = a0 + a1i1 + . . .+ anin. These numbers are known as vectors. The
products of non-zero vectors form a multiplicative group, denoted
by Γn. For a vector v, v−1 = v̄/|v|2.

Clifford Matrix..

A Clifford matrix of dimension n is a 2× 2 matrix T =

(
a b
c d

)
such

that
(i) a, b, c, d ∈ Γn − {0};
(ii) the Clifford determinant ∆(T ) = ad∗ − bc∗ = 1, and,
(iii) ab∗, cd∗, c∗a, d∗b ∈ Rn+1.
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Preliminaries

THE GROUP OF ISOMETRIES..

Definition

The group of all Clifford matrices is denoted by SL(2, Cn). In
[Wat93], Waterman showed that SL(2, Cn) is same as the group of
all invertible 2× 2 matrices over Cn with Clifford determinant 1.

Poincaré Extension...

The group SL(2, Cn) acts on Sn+1 = Rn+1 ∪ {∞} by the action:

A : v 7→ (av + b)(cv + d)−1.

This action extends by Poincaré extension to Hn+2
R . The group SL(2, Cn)

acts as the orientation-preserving isometry group of Hn+2
R .
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Preliminaries

The isometries of Hyperbolic n−Space....

...

One can classify the isometries of the space Hn+2
R through the fixed

points of the Möbius transformations in SL(2, Cn).

Characterization of isometries..

Let A ∈ SL(2, Cn) be a non-identity element. Then we define :

(a) A is parabolic if A has exactly one fixed point on ˆRn+1.

(b) A is elliptic if A has a fixed point in Hn+2
R .

(c) A is loxodromic if A has two fixed points in ˆRn+1 and
no fixed point in Hn+2

R .

(d) An elliptic element is called regular if it has a unique
fixed point on Hn+2

R .
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Preliminaries

Classification of elements of SL(2, Cn) :

Let us..

recall that a parabolic f element in SL(2, Cn) is conjugate to(
λ µ

0 λ∗−1

)
, |λ| = 1, µ 6= 0.

If λ = 1, then f is called a translation.

Up to conjugacy in SL(2, Cn), a loxodromic element f is given by

f =

(
λ 0

0 λ∗−1

)
,

where λ ∈ Γn, |λ| 6= 1. If |λ| = 1, then it is a non-regular elliptic
element.
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Preliminaries

Classification of elements of SL(2, Cn)..

Regular Elliptic Isometry..

Suppose f is regular elliptic in SL(2, Cn), where n is even. Note that
SL(2, Cn) has a natural inclusion in SL(2, Cn+1) as a closed subgroup.
We shall consider the inclusion of f in SL(2, Cn+1), and assume that f
fixes at least two points on the boundary ∂Hn+3

R . Otherwise, we can
choose two fixed points of f on ∂Hn+2

R .
So, up to conjugacy in SL(2, Cn+1), f is of the form(

λ 0

0 λ∗−1

)
, |λ| = 1.

The diagonal element λ depends on the rotation angles of f .
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Preliminaries

Important Definition..

Clifford Cross-Ratio..

Clifford cross ratios will be defined in an analogous way as like as in we do
in Complex Analysis. Let z1, z2, z3, z4 ∈ ∂Hn+2

R be any four distinct
points. Let z1 6=∞. The Clifford cross ratio of (z1, z2, z3, z4) is given by

[z1, z2, z3, z4] = (z1 − z3)(z1 − z2)−1(z2 − z4)(z3 − z4)−1,
if z2, z3, z4 6=∞;

= (z1 − z3)(z3 − z4)−1, if z2 =∞;

= (z1 − z2)−1(z2 − z4), if z3 =∞;

= (z1 − z3)(z − z2)−1, if z4 =∞.

Dr.Abhishek Mukherjee Discreteness Of Subgroups by Test Maps in Higher DimensionOctober 3, 2020 20 / 49



Preliminaries

Properties of Cross-ratio..

..

One can easily prove that for any f =

(
a b
c d

)
∈ SL(2, Cn), we have

[fz1, fz2, fz3, fz4] = (cz3 + d)∗−1[z1, z2, z3, z4](cz3 + d)∗.

Thus |[z1, z2, z3, z4]| and Re[z1, z2, z3, z4] are invariants of Möbius maps in
SL(2, Cn). We have the following basic properties of cross ratios.

1 [z1, z2, z3, z4] + [z2, z1, z3, z4] = 1.

2 [z1, z2, z3, z4][z4, z2, z3, z1] = 1.

3 |[z1, z2, z3, z4]| = |[z2, z1, z4, z3]|.
4 |[z1, z2, z3, z4]| = |[z3, z4, z1, z2]|.
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Preliminaries

Zariski-Dense Subgroups...

Definition: Zariski-Dense Subgroup..

Recall that a subgroup G of SL(2, Cn) is called Zariski-dense if it does not
have a global fixed point and neither it preserves a proper totally geodesic

subspace of H
(
Rn+ 2) .
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Preliminaries

Our Goal : Problem

Problem :

Our goal is to show that a Zariski-dense subgroup G of SL(2, Cn) is
discrete if for every loxodromic element g ∈ G, the two generator subgroup
〈f, g〉 is discrete, where f ∈ SL(2, Cn) is a certain element which is not
necessarily from G.
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Discreteness:Test maps

Overviews

Motivation..

In this part of our discussion we try to test the discreteness of a
zariski-dense subgroup of SL(2, Cn) using a test map not necessarily
belongs to the given subgroup which is our prime interest. This line
of investigation has been initially motivated by the remarkable
result of Jørgensen and aftermath in higher dimensions Abikoff and
Haas proved that a Zariski-dense subgroup G of M(n) is discrete if
and only if every two-generator subgroup 〈f, g〉 of G is discrete.

Along this line Min Chen’s Work..

..motivated us since he proved that a Zariski-dense subgroup G of
M(n) is discrete if the group 〈f, g〉 is discrete, where g ∈ G and f is
a fixed non-trivial element of M(n)(may be chosen outside G)
which is not an irrational rotation i.e. of infinite order or if having
finite order, does not pointwise fix the boundary.
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Discreteness:Test maps

Overviews

In Lower dimensions..

It is natural to ask whether the domain of the test map can be
enlarged further. In low dimensions, the domain has been found to
be much bigger. In [Yan09], [YZ14] and [Cao12], it is established
that the discreteness of a non-elementary subgroup G of SL(2,C) is
controlled by two-generator subgroups 〈f, g〉, where g is an element
in G, and f is an element in SL(2,C). Thus any element from
SL(2,C) may be chosen to be test map in this case, including
irrational rotations.
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Discreteness:Test maps

In Higher dimensions..

..

One immediate generalization of the complex linear fractional
transformations are the quaternionic linear fractional
transformations that can be identified with the group PSL(2,H).
Here SL(2,H), the 2× 2 quaternionic matrices with Dieudonné
determinant 1, acts by the linear fractional transformations on the
boundary of the 5-dimensional hyperbolic space. In [GM17], also
see [Kel03], some Jørgensen type inequalities for two generator
subgroups of SL(2,H) were obtained. In [GMS18], these inequalities
are used to prove that the discreteness of a Zariski-dense subgroup
G of SL(2,H) is determined by two generator subgroups 〈f, g〉,
where f is a certain test map from SL(2,H) and g is a loxodromic
element of G. In particular it follows that certain irrational rotations
may also be chosen as test maps.
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Discreteness:Test maps

Definition required..

The above results naturally raise the question whether the test maps may
be chosen to be irrational rotations in higher dimensions where we shall
adopt the Clifford algebraic formalism of PO(n, 1) to answer this question
by means Jørgensen type inequalities for two-generator subgroups of
SL(2, Cn) in [Wat93]. Cao and Waterman extended Waterman’s
inequalities using conjugacy invariants in [CW98].

Given an isometry f of Hn+2
R , one can associate ‘rotation angles’ to it,

and the rotation angles may be chosen to be elements of (−π, π]. The
rotation angles are conjugacy invariants of an element, e.g. [Kul07]. One
can further classify dynamical types of elements in SL(2, Cn) using the
rotation angles and translation lengths, see [GK09]. For a non-elliptic
isometry f , let τf denotes the translation length of f between the fixed
points. τf = 0 if and only if f is parabolic. The conjugacy invariant β(f)
used by Cao and Waterman can be defined in the next
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Discreteness:Test maps

Some Definitions..

Definition..

Let f be an element in SL(2, Cn). Let θ1, . . . , θk ∈ (−π, π] be rotation
angles of f (counted with multiplicities). Let Θ = max1≤i≤k |θi|.
If f is elliptic or parabolic, then β(f) = 4 sin2(Θ/2).
If f is loxodromic, then β(f) = 4 sinh2(τf/2) + 4 sin2(Θ/2).
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Discreteness:Test maps

Cao-Waterman Inequalities..

We need call the following results which are important Jørgensen type
inequalities for two-generator subgroups of SL(2, Cn) when one of the
generators is either elliptic or hyperbolic.

....

Theorem

[CW98] Let g =

(
a b
c d

)
∈ SL(2, Cn) be any element and f ∈ SL(2, Cn)

be a loxodromic element having two fixed points u, v in ∂Hn+2
R satisfying

that {gu, gv} is not equal to {u, v}. If 〈f, g〉 generate a discrete subgroup
in SL(2, Cn), then

β(f)
(
1 + |[u, v, gu, gv]|

)
≥ 1.
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Discreteness:Test maps

Cao-Waterman Inequalities..

....

Theorem

[CW98] If g =

(
a b
c d

)
∈ SL(2, Cn) any element and f ∈ SL(2, Cn) be an

elliptic element such that 〈f, g〉 forms a non-elementary discrete subgroup
in SL(2, Cn), then we have

β(f)

(
1

4 sin2(π/10)
+ |[u, v, gu, gv]|

)
≥ 1,

where u, v are any two boundary fixed points of f .
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Cao-Waterman Inequalities..

....

The Jørgensen type inequality for non-elliptic isometries fixing the
boundary point ∞ is given by the following.

Theorem

[CW98] f =

(
λ µ

0 λ∗−1

)
∈ SL(2, Cn) be a non-elliptic isometry that fixes

the boundary point ∞. Let Let g =

(
a b
c d

)
∈ SL(2, Cn) be any element

in SL(2, Cn) such that 0 < ρ = 2 cosh(τf/2)
√
β(f) < 1, and

fix(f) ∩ fix(g) = ∅. If 〈f, g〉 generate a discrete subgroup in SL(2, Cn),
then

|tr2(fgf−1)[fg(∞), fg−1(∞), g(∞), g−1(∞)]| ≥ (1−ρ+
√

(1−ρ)2−4β(f)
2 .

Moreover, if f is a translation, i.e. λ = 1, then we have

|c|2|µ|2 ≥ (1−ρ+
√

(1−ρ)2−4β(f)
2 .
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Some facts to be used

..

Let L be the set of loxodromic elements in U(n, 1;F). It is well known that
L is an open subset of U(n, 1;F). This fact will be crucial for our proofs.
Let E be the set of all regular elliptic elements in U(n, 1;F). When
F = C,H, E 6= ∅. When F = R, note that E 6= ∅ if and only if n is even.
For n odd, an elliptic f in U(n, 1;R) has at least two fixed points on
∂Hn

R. It is known that E is an open subset of U(n, 1;F). The following
theorem will also be useful for our purpose.

Theorem

Let G be a subgroup of U0(n, 1;F) such that there is no point in Hn
F or

proper totally geodesic submanifold in Hn
F which is invariant under G.

Then G is either discrete or dense in U0(n, 1;F).
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Some facts to be used

..

Let L(G) be the limit set of a subgroup G of U(n, 1;F). The limit set
L(G) is a closed G-invariant subset of ∂Hn

F. The group G is elementary if
L(G) is finite. If G is elementary, L(G) consists of at most two points. If
G is non-elementary, then L(G) is an infinite set and every non-empty,
closed G-invariant subset of ∂Hn

F contains L(G). We note the following
lemma, for proof see [Rat06, Chapter 12].

Lemma

Let a ∈ ∂Hn
F be fixed by a non-elliptic element of a subgroup G of

U(n, 1;F), then a is a limit point of G.
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Main Theorems
We prove the following.

Main Theorem

[14] Let G be a Zariski-dense subgroup of SL(2, Cn).

1 Let f be a loxodromic element in SL(2, Cn), not necessarily in G,
such that 0 < β(f) < 1. If the two generator subgroup 〈f, g〉 is
discrete for every loxodromic element g in G, then G is discrete.

2 Let f be an elliptic element SL(2, Cn), not necessarily in G, such that
0 < β(f) < 4 sin2( π10). If the two generator subgroup 〈f, g〉 is
discrete for every loxodromic element g in G, then G is discrete.

3 Let f be a non-elliptic isometry in SL(2, Cn), not necessarily in G,
such that

0 < ρ = 2 cosh(τf/2)
√
β(f) < 1.

If the two generator subgroup 〈f, g〉 is discrete for every loxodromic
element g in G, then G must be discrete.
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PROOF

Sketch of the proof..

Let Fix(f) be subset of HR
n+2

that is pointwise fixed by f . Let Of be
the stabilizer subgroup of Fix(f) in SL(2, Cn). Clearly, Of is a closed

subgroup of SL(2, Cn). If possible suppose G is not discrete. Since G is
Zariski-dense and assumed to be non-discrete, we must have that G is
dense in SL(2, Cn). So f ∈ Ḡ. Since L ∩ (SL(2, Cn) \Of ) is an open

subset of SL(2, Cn), there exists a sequence {gn} of loxodromic elements
in G ∩ (L ∩ (SL(2, Cn) \Of )) such that gn → f .

(1) Without loss of generality, up to conjugacy, assume that
Fix(f) = {0,∞}, and

f =

(
λ 0

0 λ∗−1

)
, |λ| 6= 1.
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PROOF

Sketch of the proof..

Note that the subgroups 〈f, gn〉 are non-elementary, and they are discrete

by hypothesis. Let gn =

(
an bn
cn dn

)
. It can be seen that

[0,∞, gn(0), gn(∞)] = −bnc∗n. Thus using Cao-Waterman’s inequality,

β(f)(1 + |bncn|) ≥ 1

⇒ |bncn| ≥ −1 +
1

β(f)
> 0.

But we have bncn → 0 as n→∞. This leads to a contradiction.
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PROOF

Sketch of the proof..

(2) In this case, gn and fgnf
−1 are elements in 〈f, gn〉, so, by a known

result, 〈f, gn〉 is non-elementary. As in the above case, we have by
Cao-Waterman’s inequality, |bncn| ≥ − 1

4 sin2 π
10

+ 1
β(f) > 0, and we arrive

at a contradiction.

(3) Applying suitable conjugation, without loss of generality we may
assume that one of the fixed point of f be ∞ which leaves f in the form

f =

(
λ µ

0 λ∗−1

)
. Then using Cao-Waterman’s inequality we must have

|tr2(fgnf−1)[fgn(∞), fg−1n (∞), gn(∞), g−1n (∞)]| ≥ (1−ρ+
√

(1−ρ)2−4β(f)
2 .
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PROOF

Sketch of the proof..

By calculation, we see that the left hand side of the above inequality will
be same as the left hand side of the following inequality:
|λ|−2|cn|2|f(anc

−1
n )− (anc

−1
n )|.|f(−c−1n dn)− (−c−1n dn)| ≥

(1−ρ+
√

(1−ρ)2−4β(f)
2 , i.e.

kn = |cn|2|f(anc
−1
n )− (anc

−1
n )|.|f(−c−1n dn)− (−c−1n dn)| ≥

|λ|2(1−ρ+
√

(1−ρ)2−4β(f)
2 . Since f and gn does not have a common fixed

point, we must have cn 6= 0. Also since 0 < ρ < 1, hence,
(1−ρ+

√
(1−ρ)2−4β(f)
2 is a positive real number. So, |f(anc

−1
n )− (anc

−1
n )|

and |f(−c−1n dn)− (−c−1n dn)| are non-zero. Thus for all n, kn is bounded
above by a positive real number. But kn → 0 as n→∞. This is a

contradiction. This proves the theorem.
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Discreteness:Test maps Main Theorem

IMPORTANT REMARK

..

The main theorem says that one may choose certain irrational
rotations as test maps which is a very interesting part of our
investigation. If we go through very minutely then we may observe
that our choice of test maps depends on the Cao-Waterman’s
inequalities to test our desired discreteness of G. After depicting
the above theorem we have achieved another interesting result
using similar way as in the main theorem .

Another Discreteness Criterion

In this theorem we have achieved to show essentially that a
subgroup G is discrete if every two generator subgroup of SL(2, Cn)
is discrete where one generator is a test map f and the other is a
conjugate of f by a loxodromic element of G and the complete
statement is as follows :
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DISCRETENESS CRITERION

Theorem

[15] Let G be a Zariski-dense subgroup of SL(2, Cn).

1 Let f be a loxodromic element in SL(2, Cn), not necessarily in G,
such that 0 < β(f) < 1. If the two generator subgroup 〈f, gfg−1〉 is
discrete for every loxodromic element g in G, then G is discrete.

2 Let f be an elliptic element SL(2, Cn), not necessarily in G, such that
0 < β(f) < 4 sin2( π10). If the two generator subgroup 〈f, gfg−1〉 is
non-elementary and discrete for every loxodromic element g in G,
then G is discrete.

3 Let f be a non-elliptic isometry in SL(2, Cn), not necessarily in G,
such that

0 < ρ = 2 cosh(τf/2)
√
β(f) < 1.

If the two generator subgroup 〈f, gfg−1〉 is discrete for every
loxodromic element g in G, then G must be discrete.
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REMARK...

..

The results in this paper show that in order to determine discreteness of a
Zariski-dense subgroup G of SL(2, Cn), it is enough to check discreteness
of the two generator subgroups of G obtained by adjoining the loxodromic
elements of G to a ‘test map’ in SL(2, Cn), and further the test map may
be chosen from an open subset of the isometry group. Let E denote the
set of regular elliptic elements of SL(2, Cn). The set E is also an
non-empty open subset of SL(2, Cn), provided n is even when F = R.
Thus, if we replace the loxodromic elements g by regular elliptic elements,
then our theorems go well for all even n.
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THANK YOU
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