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Euclidean tetrahedron

The calculation of the volume of a polyhedron in 3-dimensional space
E 3, H3, or S3 is a very old and difficult problem. The first known result
belongs to Tartaglia (1499-1557) who had described an algorithm for
calculating the height of a tetrahedron with some concrete lengths of its
edges. The formula which expresses the volume of an Euclidean
tetrahedron in terms of its edge lengths was given by Euler. The
multidimensional analogue of this result is known as the Cayley–Menger
determinant. More precisely, let T be an Euclidean tetrahedron with edge
lengths dij , 1 ≤ i < j ≤ 4. Then V = Vol(T ) is given by

288V 2 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 d2

12 d2
13 d2

14

1 d2
21 0 d2

23 d2
24

1 d2
31 d2

32 0 d2
34

1 d2
41 d2

42 d2
43 0

∣∣∣∣∣∣∣∣∣∣
.

Here V is a root of quadratic equation whose coefficients are integer
polynomials in dij , 1 ≤ i < j ≤ 4.
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Introduction

The problem of calculating volumes of polyhedra remains relevant
nowadays. This is partly due to the fact that the volume of a fundamental
polyhedron is main geometrical invariant for a 3-dimensional manifold.
Since Mostov rigidity theorem it is a topological invariant also.

Every 3-manifold can be presented by a fundamental polyhedron. That
means we can pair-wise identify the faces of some polyhedron to construct
a 3-manifold. Thus the volume of 3-manifold is the volume of its
fundamental polyhedron.
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Introduction

Theorem (Thurston, Jørgensen)
The volumes of 3-dimensional hyperbolic manifolds form a closed
non-discrete set on the real line. This set is well ordered. There are only
finitely many manifolds with a given volume.

J. Weeks (1985), S. Matveev and A. Fomenko (1988) constructed a closed
hyperbolic 3-manifold obtained by (5, 2) and (5, 1) Dehn surgeries on the
Whitehead link. Its volume is 0, 9427... In 2009, D. Gabai, R. Meyerhoff,
P. Milley showed that it has the smallest volume of any closed orientable
hyperbolic 3-manifold.

Second smallest manifold was given by W. Thurston (1980) by (5, 1) Dehn
surgery on the figure-eight knot. Its volume is 0, 98...

Third known smallest manifold is Meyerhof–Neumann manifold (1992). Its
volume is 1, 01...
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Some motivation to find exact volume formulas

Rational volume conjecture. Let P be a spherical polyhedron whose
dihedral angles are in π ·Q . Then Vol (P) ∈ π2 ·Q .

Examples
1. Let L, be a spherical Lambert cube with dihedral angles 2π

3 ,
2π
3 ,

3π
4 .

Then

Vol L

(
2π

3
,

2π

3
,

3π

4

)
=

31

576
π2.

2. Let P be a Coxeter polyhedron in S3 (that is all dihedral angles of P
are π

n for some n ∈ N). Then the Coxeter group ∆(P) generated by
reflections in faces of P is finite and

Vol (P) =
Vol (S3)

|∆(P)|
=

2π2

|∆(P)|
∈ π2 ·Q .

3. A. Kolpakov (2015) constructed another infinite series of spherical
polyhedra with diedral angles in π ·Q and volumes in π2 ·Q
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Some motivation to find exact volume formulas

W. Thurston suggest to show that volumes of hyperbolic 3-manifolds are
not all rationally related (problem #23 (1982), proposed before by
J. Milnor, still open).
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First examples of hyperbolic 3-manifolds

1914 Gieseking found first example of hyperbolic manifold (non-compact,
non-orientable)

1929 Klein wrote in his book «Non-Euclidean Geometry» that examples of
compact hyperbolic 3-manifolds are unknown

1931 Löbell presented the example of compact orientable hyperbolic
3-manifold

1933 Weber and Seifert constructed compact orientable «dodecahedral
hyperbolic space»
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Examples of geom. structures on knots complements in S3

1975 R. Riley found first examples of hyperbolic structures on seven
excellent knots and links in S3.
1977 W. Thurston showed that a complement of any prime knot admits a
hyperbolic structure if this knot is not toric or satellite one.

1980 W. Thurston constructed a hyperbolic 3-manifold homeomorphic to
the complement of knot 41 in S3 by gluing faces of two regular ideal
tetrahedra. This manifold has a complete hyperbolic structure.

1982 J. Minkus suggested a general topological construction for the
orbifold whose singular set is a two-bridge knot in S3.
2004 H. Hilden, J. Montesinos, D. Tejada, M. Toro considered more
general topological construction known as butterfly.

1998/2006 A. Mednykh, A. Rasskazov found a geometrical realisation of
the Minkus construction in H3,S3,E3.

2009 E. Molnár, J. Szirmai, A. Vesnin realised the figure-eight knot
cone-manifold in the five exotic Thurston’s geometries.
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Upper half-space model of hyperbolic 3-space

Denote by H3 a 3-dim hyperbolic space (Lobachevsky–Boljai–Gauss space).

H3 can be modelled in R3
+ = {(x , y , t) : x , y , t ∈ R, t > 0} with metric s

given by expression ds2 =
dx2 + dy2 + dt2

t2
.

The boundary ∂H3 = {(x , y , 0) : x , y ∈ R} caled absolute and consist of
points at infinity.

Isometry group Isom(H3) is a group of all actions on H3 preserving the
metric s. Denote by Isom+(H3) the group of orientation preserving
isometries.

Isom+(H3) ∼= PSL(2,C) (Pozitive Special Lorentz group). An element

g =

(
a b
c d

)
∈ PSL(2,C) acts on H3 by the rule

g : (z , t) 7→

(
(az + b)(cz + d) + act2

|cz + d |2 + |c |2 t2
,

t

|cz + d |2 + |c |2 t2

)
,

where z = x + i y .
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Geodesic lines and planes in half-space model of H3

Isom(H3) is generated by reflections with respect to geodesic planes.
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Geodesic lines and planes in ball model of H3

Isom(H3) is generated by reflections with respect to geodesic planes.
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Constructing manifolds from polyhedra

Consider a right-angled polyhedron P (i.e. all the dihedral and planar
angles of P are π/2). In Euclidean space we can take a cube. In the
spherical space there is a right-angled tetrahedron (1/8 part of S3). In the
hyperbolic space there are infinitely many right-angled polyhedra.

The class of polyhedra that can be realised in hyperbolic geometry with
right angles is referred as Pogorelov polyhedra.

It follows from Andreev theorem (1968) that any polyhedron which has no
triangle and quadrilateral faces and such that any its vertex is of valency 3,
can be realised as right-angled polyhedron in H3.

Example
n-gonal Löbell prism R(n), n > 4;
all combinatorial fullerenes (including known in chemistry
C60,C70,C78,C84,C200 etc.)

R(5) = C12 = dodecahedron.
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Constructing manifolds from polyhedra

To construct hyperbolic manifolds one can follow the algorithm:

1 take a compact right-angled hyperbolic polyhedron P ;
2 set a regular colouring of the faces of P (the incidental faces should

have different colours; the number of colours will be from 3 to 7);
3 pairwise identify the faces of same colour of several copies of P .

This approach was originally used by Löbell for R(6) (1931) to construct
the first example of a compact hyperbolic manifold. M. Takahashi (1985)
do this for regular right-angled dodecahedron (or R(5)). A. Vesnin (1987)
generalised this construction for any compact hyperbolic right-angled
polyhedron P . All the manifolds constructed by colourings in 4 colours are
orientable. If one use 5, 6 or 7 colours then non-orientable hyperbolic
manifolds can be produced.
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Löbell construction of the first compact hyperbolic manifold

Consider a Löbell prism R(6) having 12 pentagonal lateral faces. Let us set
the colouring with 4 colours a, b, c , d . We take 8 copies of this coloured
R(6). Then identify faces of this 8 copies using the rule:

a : (15)(26)(37)(48)

b : (16)(25)(38)(47)

c : (17)(28)(35)(46)

d : (18)(27)(36)(45)
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From polyhedra to knots and links

Borromean Rings cone-manifold and Lambert cube

This construction done by W. Thurston, D. Sullivan and J.M. Montesinos.
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From polyhedra to knots and links

From the above consideration we get

VolB(λ, µ, ν) = 8 ·Vol L
(
λ

2
,
µ

2
,
ν

2

)
.

Recall that B(λ, µ, ν) is
i) hyperbolic iff 0 < λ, µ, ν < π (E.M. Andreev)
ii) Euclidean iff λ = µ = ν = π

iii) spherical iff π < λ, µ, ν < 3π, λ, µ, ν 6= 2π
(R. Diaz, D. Derevnin, A. Mednykh)
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From polyhedra to knots and links

Volume calculation for L(α, β, γ). The main idea.
0. Existence

L(α, β, γ) :


0 < α, β, γ < π/2, H3

α = β = γ = π/2, E3

π/2 < α, β, γ < π, S3.

1. Schläfli formula for V = Vol L(α, β, γ)

k dV =
1

2
(`αdα + `βdβ + `γdγ), k = ±1, 0 (curvature)

In particular in hyperbolic case:
∂V

∂α
= −`α

2
,

∂V

∂β
= −

`β
2
,

∂V

∂γ
= −`γ

2
(∗)

Vol L
(π

2
,
π

2
,
π

2

)
= 0. (∗∗)
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From polyhedra to knots and links

2. Relations between lengths and angles
(i) Tangent Rule

tanα

tanh `α
=

tanβ

tanh `β
=

tan γ

tanh `γ
=: T (Kellerhals)

(ii) Sine-Cosine Rule (3 different cases)

sinα

sinh `α

sinβ

sinh `β

cos γ

cosh `γ
= 1 (Derevnin,Mednykh)

(iii) Tangent Rule

T 2 − A2

1 + A2

T 2 − B2

1 + B2

T 2 − C 2

1 + C 2

1

T 2
= 1, (Hilden,Lozano,Montesinos)

where A = tanα,B = tanβ,C = tan γ. Equivalently,

(T 2 + 1)(T 4 − (A2 + B2 + C 2 + 1)T 2 + A2B2C 2) = 0.

Remark. (ii) ⇒(i) and (i) & (ii) ⇒ (iii).
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From polyhedra to knots and links

3. Integral formula for volume
Hyperbolic volume of L(α, β, γ) is given by

W =
1

4

∞∫
T

log

(
t2 − A2

1 + A2

t2 − B2

1 + B2

t2 − C 2

1 + C 2

1

t2

)
dt

1 + t2
,

where T is a positive root of the integrant equation (iii).
Proof. By direct calculation and Tangent Rule (i) we have:

∂W

∂α
=
∂W

∂A

∂A

∂α
= −1

2
arctan

A

T
= −`α

2
.

In a similar way

∂W

∂β
= −

`β
2

and
∂W

∂γ
= −`γ

2
.

By convergence of the integral W (π2 ,
π
2 ,

π
2 ) = 0. Hence,

W = V = Vol L(α, β, γ).
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Geometry of two bridge knots and links

The Hopf link

The Hopf link 221 is the simplest two component link.

The fundamental group π1(S3\221) = Z2 is a free Abelian group of rank 2.
It makes us sure that any finite covering of S3\221 is homeomorphic to
S3\221 again.
The orbifold 221(π, π) arises as a factor space by Z2-action on the projective
space P3. That is, P3 is a two-fold covering of the sphere S3 branched
over the Hopf link. It turns that the sphere S3 is a two-fold
unbranched covering of the projective space P3.
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Geometry of two bridge knots and links

The Hopf link (Construction by Abr. and Mednykh)

S
3

=

a

b

a

b

N=(0,1)

C=(0,e )
ibA=(1,0)

B=(e ,0)
ia

Fundamental tetrahedron
T (α, β) = T

(
α, β, π2 ,

π
2 ,

π
2 ,

π
2

)
∈ S3 ⊂ R4 = C× C

for the cone-manifold 221(α, β).

Relations between lengths and angles: `α = β, `β = α.
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Geometry of two bridge knots and links

Theorem (Abr., Mednykh)

The Hopf link cone-manifold 221(α, β) is spherical for all positive α and β.
The spherical volume is given by the formula

Vol 221(α, β) =
αβ

2
.

Proof. Let 0 < α, β 6 π. Consider a spherical tetrahedron T (α, β) with
dihedral angles α and β prescribed to the opposite edges and with right
angles prescribed to the remained ones. To obtain a cone-manifold 221(α, β)
we identify the faces of tetrahedron by α- and β-rotations in the respective
edges. Hence, 221(α, β) is spherical and Vol 221(α, β) = Vol T (α, β) = αβ

2 .

We note that T (α, β) is a union of n2 tetrahedra T (αn ,
β
n ). Hence, for large

positive α and β we also obtain Vol 221(α, β) = n2 ·Vol T (αn ,
β
n ) = αβ

2 .
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Geometry of two bridge knots and links

The Hopf link with bridge (Construction by Abr. and Mednykh)

S
3

=

a

b

g
a

g/4

g/4

g/4

g/4

b
4x =

g/4 a/2

b/2

Fundamental tetrahedron T
(
α, β,

γ

4
,
γ

4
,
γ

4
,
γ

4

)
for the Hopf link with bridge cone-manifold H(α, β; γ).
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Geometry of two bridge knots and links

The Hopf link with bridge

Relations between lengths and angles:

Tangent Rule (Abr., Mednykh)

tan
α

2
tanh

`α
2

=
tanh `γ
tan γ

4

= tan
β

2
tanh

`β
2

Sine-Cosine Rule (Abr., Mednykh)

cos γ4
cosh `γ

=
sin α

2

cosh `α
2

·
sin β

2

cosh
`β
2

Given α, β, γ these theorems are sufficient to determine `α, `β, `γ . This
allows us to use Schläfli equation: we are able to solve the system of PDE’s
to get the volume formula.
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Geometry of two bridge knots and links

The Hopf link with bridge

Theorem (Abr., Mednykh)
The Hopf link with bridge cone manifold H(α, β; γ) is hyperbolic for any
α, β ∈ (0, π) if and only if 

γ > 2(π − α)

γ > 2(π − β)

γ < 2π

The hyperbolic volume is given by the formula

Vol H(α, β; γ) = i · S
(
α
2 ,

β
2 ,

γ
4

)
, where S

(
π
2 − x , y , π2 − z

)
=

S̃(x , y , z) =
∞∑

m=1

(
D−sin x sin z
D+sin x sin z

)m
· cos 2mx−cos 2my+cos 2mz−1

m2 − x2 + y2 − z2

is the Schläfli function.
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Volume of a hyperbolic tetrahedron

It is difficult problem to find the exact volume formulas for hyperbolic
polyhedra of prescribed combinatorial type. It was done for hyperbolic
tetrahedron of general type, but even for general hyperbolic octahedron it
is an open problem.

Nevertheless, if we know that a polyhedron has a symmetry, then the
volume calculation is essentially simplified. Firstly this effect was shown by
Lobachevsky. He found the volume of an ideal tetrahedron, which is
symmetric by definition.
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Hyperbolic orthoscheme

The following theorem is the Coxeter’s version of the Lobachevsky result.

Theorem (Coxeter, 1936)

A

C

B
H

3

The volume of a hyperbolic orthoscheme with essential dihedral angles

A,B,C is given by the formula V =
i

4
S(A,B,C ), where

S(
π

2
− x , y ,

π

2
− z) = Ŝ(x , y , z) =

∞∑
m=1

(
D − sin x sin z

D + sin x sin z

)m cos 2mx − cos 2my + cos 2mz − 1

m2
− x2 + y2 − z2

and D ≡
√

cos2 x cos2 z − cos2 y .
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Hyperbolic orthoscheme

The volume of a biorthogonal tetrahedron (orthoscheme) was calculated by
Lobachevsky and Bolyai in H3 and by Schläfli in S3.

Theorem (J. Bolyai)

The volume of hyperbolic orthoscheme T is given by the formula

D

C

B

A

z

α

β

CD

AB

CBA

BCD

T

T

T

Vol (T ) =
tan γ

2 tanβ

z∫
0

z sinh z dz(
cosh2 z
cos2 α

− 1
)√

cosh2 z
cos2 γ

− 1
.
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Ideal tetrahedron

Consider an ideal hyperbolic tetrahedron T with all vertices at the infinity

Opposite dihedral angles of an ideal tetrahedron are equal to each other
and A + B + C = π.

Theorem (J. Milnor, 1982)

Vol(T ) = Λ(A) + Λ(B) + Λ(C ), where Λ(x) = −
x∫
0

log |2 sin t|dt

is the Lobachevsky function.

More complicated case with only one vertex at the infinity was investigated
by E. B. Vinberg (1993).

N. Abrosimov (SIM, NSU, RMC TSU) Volume of a hyperbolic tetrahedron Jun. 25, 2019 29 / 45



Definition
A compact hyperbolic tetrahedron T is a convex hull of four points in the
hyperbolic space H3.

Let us denote the vertices of T by numbers 1, 2, 3 and 4. Then denote by
`ij the length of the edge connecting i-th and j-th vertices. We put θij for
the dihedral angle along the corresponding edge.

1

2

3

4

l12

θ12

Fig.: Compact hyperbolic tetrahedron T
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Gram matrix G (T ) of a tetrahedron T

Definition
A Gram matrix G (T ) of tetrahedron T is defined as
G (T ) = 〈− cos θij〉i ,j=1,2,3,4 =

1 − cos θ12 − cos θ13 − cos θ14
− cos θ12 1 − cos θ23 − cos θ24
− cos θ13 − cos θ23 1 − cos θ34
− cos θ14 − cos θ24 − cos θ34 1

 ,

we assume here that − cos θii = 1.
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Edge matrix E (T ) of a tetrahedron T

Definition
An edge matrix E (T ) of a hyperbolic tetrahedron T is defined as

E (T ) = 〈cosh `ij〉i ,j=1,2,3,4 =


1 cosh `12 cosh `13 cosh `14

cosh `12 1 cosh `23 cosh `24
cosh `13 cosh `23 1 cosh `34
cosh `14 cosh `24 cosh `34 1

 ,

where `ii = 0 and cosh `ii = 1.

It is well known that T is uniquely defined up to isometry either by the set
of its dihedral angles or the set of its edge lengths. So, either a Gram
matrix G (T ) or an edge matrix E (T ) contains all the information about a
hyperbolic tetrahedron T . This is unlikely to Euclidean case, where only an
edge matrix defines a tetrahedron up to isometry.
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Hyperbolic tetrahedron

Despite of the above mentioned partial results, a volume formula for
arbitrary hyperbolic tetrahedron has been unknown until recently. The
general algorithm for obtaining such a formula was indicated by
W.–Y. Hsiang (1988) and the complete solution of the problem was
given by Yu. Cho and H. Kim (1999), J. Murakami, M. Yano (2001)
and A. Ushijima (2002).

In these papers the volume of tetrahedron is expressed as an analytic
formula involving 16 Dilogarithm of Lobachevsky functions whose
arguments depend on the dihedral angles of the tetrahedron and on some
additional parameter which is a root of some complicated quadratic
equation with complex coefficients.
A geometrical meaning of the obtained formula was recognized by
G. Leibon from the point of view of the Regge symmetry. An excellent
exposition of these ideas and a complete geometric proof of the volume
formula was given by Y. Mohanty (2003).
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Murakami-Yano’s formula

Recall that the Dilogarithm function is defined by

Li 2(x) = −
x∫

0

log(1− t)

t
dt.

We set `(z) = Li 2(e iz) and note that =(`(z)) = 2 Λ( z
2 ).

Theorem (J. Murakami, M. Yano, 2001)

Vol(T ) = 1
2=(U(z1,T )− U(z2,T )), where

U(z ,T ) =
1

2
(`(z) + `(A + B + D + E + z)

+`(A + C + D + F + z) + `(B + C + E + F + z)

−`(π + A + B + C + z)− `(π + A + E + F + z)

−`(π + B + D + F + z)− `(π + C + D + E + z)).
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Derevnin-Mednykh’s formula

We suggest the following version of the integral formula for the volume.
Let T = T (A,B,C ,D,E ,F ) be a hyperbolic tetrahedron with dihedral
angles A,B,C ,D,E ,F . We set
V1 = A + B + C , V2 = A + E + F , V3 = B + D + F , V4 = C + D + E
(for vertices)
H1 = A+B +D +E , H2 = A+C +D +F , H3 = B +C +E +F , H4 = 0
(for Hamiltonian cycles).

Theorem (D. Derevnin, A. Mednykh, 2005)

The volume of a hyperbolic tetrahedron is given by the formula

Vol (T ) = −1

4

z2∫
z1

log
4∏

i=1

cos Vi+z
2

sin Hi+z
2

dz ,

where z1 and z2 are appropriate roots of the integrand.
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Derevnin-Mednykh’s formula

More precisely, the roots in the previous theorem are given by the formulas

z1 = arctan
K2

K1
− arctan

K4

K3
, z2 = arctan

K2

K1
+ arctan

K4

K3

and

K1 = −
4∑

i=1

(cos(S − Hi ) + cos(S − Vi )),

K2 =
4∑

i=1

(sin(S − Hi ) + sin(S − Vi )),

K3 = 2(sinA sinD + sinB sinE + sinC sinF ),

K4 =
√

K 2
1 + K 2

2 − K 2
3 , S = A + B + C + D + E + F .
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Sforza’s formula

Theorem (G. Sforza, 1906)
Let T be a compact hyperbolic tetrahedron with Gram matrix G . We
assume that all the dihedral angles are fixed exept θ34 which is formal
variable. Then the volume V = V (T ) is given by the formula

Vol (T ) =
1

4

θ34∫
t0

log
c34(t)−

√
− det G (t) sin t

c34(t) +
√
− det G (t) sin t

dt,

where t0 is a suitable root of the equation detG (t) = 0, c34 is
(3, 4)-cofactor of the matrix G , and c34(t),G (t) are functions in one
variable θ34 denoted by t.

New and simple proof of the Sforza’s formula was given by Abr. and
A. Mednykh (2014). Proof
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Known facts about Gram matrix of a hyperbolic tatrahedron

Theorem (A. Ushijima, 2003; A. Mednykh, M. Pashkevich, 2006)

Let T be a compact hyperbolic tetrahedron with Gram matrix G . Then
(i) detG < 0;

(ii) cii > 0, i ∈ {1, 2, 3, 4};

(iii) cosh `ij =
cij√
ciicjj

,

where cij = (−1)i+jGij is ij-cofactor of Gram matrix G .

Theorem (Jacobi equation)
Let G = (aij)i ,j=1,...,n be an n × n matrix. Denote by C = (cij)i ,j=1,...,n the
matrix of cofactors cij = (−1)i+jGij , where Gij is ij-th minor of matrix G .
Then

det (cij)i , j=1,...,k = detG k−1 · det (aij)i , j=k+1,...,n.
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Some facts about edge matrix of a hyperbolic tatrahedron

Theorem
Let T be a compact hyperbolic tetrahedron with edge matrix E . Then

(i) detE > 0;

(ii) cii < 0, i ∈ {1, 2, 3, 4};

(iii) cos θij =
−cij√
ciicjj

,

where cij = (−1)i+jEij is ij-cofactor of edge matrix E .
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Our new formula in terms of edge matrix

Theorem (Abr. and B. Vuong, 2019)
Let T be a compact hyperbolic tetrahedron given by its edge matrix E
and cij = (−1)i+jEij is ij-cofactor of E . We assume that all the edge
lengths are fixed exept `34 which is formal variable. Then the volume
V = V (T ) is given by the formula

V =
1

2

`34∫
0

c14c33(c23c44 − c24c34) + c13c44(c24c33 − c23c34)

c33c44 detE
√

c33c44 − c234

t sinh t dt,

where cofactors cij and edge matrix determinant detE are functions in one
variable `34 denoted by t.

To check if this formula is correct we put every edge lengths to be equal
`ij = a.
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Particular case of a regular hyperbolic tetrahedron

Theorem (Abr. and B. Vuong, 2017 and many other works)
Let T = T (a) be a regular hyperbolic tetrahedron and all of its edge
lengths are equal to a, a ≥ 0. Then the volume V = V (T ) is given by the
formula

V =

a∫
0

3 t sinh t dt

(1 + 2 cosh t)
√

(cosh t + 1)(3 cosh t + 1)
.
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Thank you for attention!
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New proof of Sforza formula

Proof of Sforza formula

We start with the the following theorem.

Theorem (Jacobi equation)
Let G = (aij)i ,j=1,...,n be an n × n matrix. Denote by C = (cij)i ,j=1,...,n the
matrix of cofactors cij = (−1)i+jGij , where Gij is ij-th minor of matrix G .
Then

det (cij)i , j=1,...,k = detG k−1 · det (aij)i , j=k+1,...,n.
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New proof of Sforza formula

Apply the theorem to Gram matrix G for n = 4 and k = 2

G =


1 − cos θ34 x x

− cos θ34 1 x x
x x x x
x x x x

 ,C =


x x x x
x x x x
x x c33 c34
x x c34 c44

 .

We have c33c44 − c234 = detG · (1− cos2 θ34) = detG · sin2 θ34.

From the other hand, by Cosine Rule

cosh `34 =
c34√
c33c44

, and sinh `34 =

√
c234 − c33c44

c33c44
,

Thus,

sinh `34 =
sin θ34

√
− detG

√
c33c44

.
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New proof of Sforza formula

Since exp(±`34) = cosh `34 ± sinh `34 we have

exp(`34) =
c34 + sin θ34

√
− detG

√
c33c44

, exp(−`34) =
c34 − sin θ34

√
− detG

√
c33c44

.

Hence,

exp(2`34) =
c34 + sin θ34

√
− detG

c34 − sin θ34
√
− detG

, and `34 =
1

2
log

c34 + sin θ34
√
− detG

c34 − sin θ34
√
− detG

.

By the Schläfli formula

−dV =
1

2

∑
ij

`ijdθij , i , j ∈ {1, 2, 3, 4}

V =

θ34∫
t0

(−`34
2

)dt =
1

4

θ34∫
t0

log
c34 −

√
− detG sin θ34

c34 +
√
− detG sin θ34

dt,

where t0 is a root of equation detG (t) = 0. Go back
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