Enumeration of coverings for closed orientable Euclidean manifolds

Alexander Mednykh

Sobolev Institute of Mathematics Novosibirsk State University Tomsk State University,

Tomsk, 03 October 2020

Definition. Consider a manifold \mathcal{M} . Two coverings $p_1 : \mathcal{M}_1 \to \mathcal{M}$ and $p_2 : \mathcal{M}_2 \to \mathcal{M}$ are said to be equivalent if there exists a homeomorphism $h : \mathcal{M}_1 \to \mathcal{M}_2$ such that $p_1 = p_2 \circ h$.

$$\begin{array}{ccc} \mathcal{M}_1 & \xrightarrow{h} & \mathcal{M}_2 \\ p_1 \downarrow & & \downarrow p_2 \\ \mathcal{M} & \xrightarrow{id} & \mathcal{M} \end{array}$$

Let $p: \mathcal{M}_1 \to \mathcal{M}$ be a *n*-fold covering and $\Gamma = \pi_1(\mathcal{M})$ be the fundamental group of \mathcal{M} . Then there is an embedding

$$H_1 = \pi_1(\mathcal{M}_1) \subset_{index \ n} \Gamma = \pi_1(\mathcal{M}).$$

Two embeddings $H_1 = \pi_1(\mathcal{M}_1) \subset \Gamma$ and $H_2 = \pi_1(\mathcal{M}_2) \subset \Gamma$ produce equivalent coverings if and only if H_1 and H_2 are conjugate in Γ .

Consider the three classical cases.

Case 1. Let S be a bordered surface of Euler characteristic $\chi = 1 - r$, $r \ge 0$. Than $\Gamma = \pi_1(S) \cong F_r$ is a free group of rank r. A typical example of S is the disc D_r with r holes removed:

Case 2. Let S be a closed orientable surface of genus $g \ge 0$. Then

$$\pi_1(S) = \Phi_g = \langle a_1, b_1, \dots, a_g, b_g : \prod_{i=1}^g [a_i, b_i] = 1 \rangle$$

э

Case 3. Let S be a closed non-orientable surface of genus $p \ge 1$.

$$\pi_1(\mathcal{S}) = \Lambda_p = \langle a_1, a_2, \dots, a_p : \prod_{i=1}^p a_i^2 = 1 \rangle$$

Alexander Mednykh (IM SB RAS)

6 / 14

• Two main problems

From now on we deal with the following two problems.

Problem 1. Find the number $s_{\Gamma}(n)$ of subgroups of index *n* in the group Γ .

Problem 2. Find the number $c_{\Gamma}(n)$ of conjugacy classes of subgroups of index *n* in the group Γ .

Remark. In the latter case $c_{\Gamma}(n)$ coincides with the number of *n*-fold unbranched non-equivalent coverings of a manifold \mathcal{M} with

$$\pi_1(\mathcal{M}) \equiv \Gamma.$$

Problem 1: Problem 2: • Short history: $s_{\Gamma}(n)$ $c_{\Gamma}(n)$ 1. $\Gamma = F_r$ $\Gamma = \pi_1(S), S = D_r$ M.Hall (1949) V.Liskovets (1971) bordered surface J.H.Kwak, J.Lee (\geq 1971) 2. $\Gamma = \Phi_{g}$ $\Gamma = \pi_1(S), S = S_{\sigma}$ A.Mednykh (1979) A.Mednykh (1982) orientable surface **3**. $\Gamma = \Lambda_p$ $\Gamma = \pi_1(S), S = N_p$ G.Pozdnyakova, A.Mednykh (1986) non-orientable surface **4.** $\Gamma = \pi_1(M)$, where *M* is a closed Seifert 3-manifold V.Liskovets, M.(2000) G.Chelnokov, M.Deryagina, M.(2016)

The present report is a part of the series of our papers devoted to enumeration of finite-sheeted coverings of coverings over closed Euclidean 3-manifolds. These manifolds are also known as flat 3-dimensional manifolds or just Euclidean 3-forms. The class of such manifolds is closely related to the notion of Bieberbach group. Recall that a subgroup of isometries of \mathbb{R}^3 is called Bieberbach group if it is discrete, cocompact and torsion free. Each 3-form can be represented as a quotient \mathbb{R}^3/Γ where Γ is a Bieberbach group. In this case, Γ is isomorphic to the fundamental group of the manifold, that is $\Gamma = \pi_1(\mathbb{R}^3/\Gamma)$. Classification of three dimensional Euclidean forms up to homeomorphism is presented in the well-known monograph by J. Wolf. The class of such manifolds consists of six orientable $\mathcal{G}_1, \mathcal{G}_2, \mathcal{G}_3, \mathcal{G}_4, \mathcal{G}_5, \mathcal{G}_6$, and four non-orientable ones $\mathcal{B}_1, \mathcal{B}_2, \mathcal{B}_3, \mathcal{B}_4$.

In our previous paper [Deryagina-Chelnokov-M. 2017] we describe isomorphism types of finite index subgroups H in $\pi_1(\mathcal{B}_1)$ and $\pi_1(\mathcal{B}_2)$. Further, we calculate the respective numbers $s_{H,G}(n)$ and $c_{H,G}(n)$ for each isomorphism type H. The manifolds \mathcal{B}_1 and \mathcal{B}_2 are uniquely defined among the other non-orientable 3-forms by their homology groups $H1(\mathcal{B}_1) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and $H_1(\mathcal{B}_2) = \mathbb{Z}_2$. In our paper [Chelnokov-M. 2020], similar questions were solved for manifolds \mathcal{G}_2 and \mathcal{G}_4 which are uniquely defined among flat compact 3-dimensional orientable manifolds without a boundary by their homology groups $H_1(\mathcal{G}_2) = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}$ and $H_1(\mathcal{G}_4) = \mathbb{Z}_2 \oplus \mathbb{Z}$. The aim of the present paper published in **Journal of** Algebra 560 (2020) 48–66 is to investigate *n*-fold coverings over the orientable Euclidean manifolds \mathcal{G}_3 and \mathcal{G}_5 , whose homology groups are $H_1(\mathcal{G}_3) = \mathbb{Z}_3 \oplus \mathbb{Z}$ and $H_1(\mathcal{G}_5) = \mathbb{Z}$.

To state the main result we need the following notations: $s_{H,G}(n)$ is the number of subgroups of index n in the group G, isomorphic to the group H; $c_{H,G}(n)$ is the number conjugacy classes of subgroups of index n in the group G, isomorphic to the group H. Also we will need the following combinatorial functions: In all cases we consider the function

$$\sigma_0(n) = \sum_{k|n} 1, \quad \sigma_1(n) = \sum_{k|n} k, \quad \sigma_2(n) = \sum_{k|n} \sigma_1(k), \quad \omega(n) = \sum_{k|n} k\sigma_1(k),$$
$$\theta(n) = |\{(p,q) \in \mathbb{Z}^2 | p > 0, q \ge 0, p^2 - pq + q^2 = n\}|.$$
Equivalently,
$$\theta(n) = \sum_{k|n} \frac{2}{\sqrt{3}} \sin \frac{2\pi k}{3}.$$
 Also we suppose the above functions vanish if $n \notin \mathbb{N}.$

The first theorem provides the complete solution of the problem of enumeration of subgroups of a given finite index in $\pi_1(\mathcal{G}_3)$. For the sake of brevity, in case $H = \pi_1(\mathcal{G}_i)$ and $G = \pi_1(\mathcal{G}_j)$ we write $s_{i,j}$ and $c_{i,j}$ instead of $s_{H,G}(n)$ and $c_{H,G}(n)$ respectively.

Theorem

Every subgroup of finite index n in $\pi_1(\mathcal{G}_3)$ is isomorphic to either $\pi_1(\mathcal{G}_3)$ or $\pi_1(\mathcal{G}_1) = \mathbb{Z}^3$. The respective numbers of subgroups are (i) $s_{3,3}(n) = \sum_{k|n} k\theta(k) - \sum_{k|\frac{n}{3}} k\theta(k)$, (ii) $s_{1,3}(n) = \omega(\frac{n}{3})$.

12 / 14

The next theorem provides the number of conjugacy classes of subgroups of index n in $\pi_1(\mathcal{G}_3)$ for each isomorphism type. That is, the number of nonequivalent *n*-fold covering \mathcal{G}_3 which have a prescribe fundamental group.

Theorem

Let $\mathcal{N} \to \mathcal{G}_3$ be a n-fold covering over \mathcal{G}_3 . If n is not divisible by 3 then \mathcal{N} is homeomorphic to \mathcal{G}_3 . If n is divisible by 3 then \mathcal{N} is homeomorphic to either \mathcal{G}_3 or \mathcal{G}_1 . The corresponding numbers of nonequivalent coverings are given by the following formulas:

(i)
$$c_{3,3}(n) = \sum_{k|n} \theta(k) + \sum_{k|\frac{n}{3}} \theta(k) - 2 \sum_{k|\frac{n}{9}} \theta(k)$$

(ii)
$$c_{1,3}(n) = \frac{1}{3} \left(\omega(\frac{n}{3}) + 2 \sum_{k \mid \frac{n}{3}} \theta(k) + 4 \sum_{k \mid \frac{n}{9}} \theta(k) \right)$$

Appendix 2

Given a sequence ${f(n)}_{n=1}^{\infty}$, the formal power series

$$\hat{f}(s) = \sum_{n=1}^{\infty} \frac{f(n)}{n^s}$$

is called a Dirichlet generating function for $(f(m))_{n=1}^{\infty}$. To reconstruct the sequence f(n)from $\hat{f}(n)$ one can use Perron's formula ([1], Th. 11.17). Given sequences f(n) and g(n)we call their comodution $(f * g(n) = \sum_{k \in I} f(k) q_k^k)$. In terms of Dirichlet generating series the convolution of sequences corresponds to the multiplication of generating series $\tilde{f}^-_{reg}(s) = f(s) q_k^{(0)}$. For the above facts see, for example, ([1], Ch. 11-12).

Here we present the Dirichlet generating functions for the sequences $s_{H,G}(n)$ and $c_{H,C}(n)$. Since Theorems 1–4 provide the explicit formulas, the remainder is done by direct calculations.

By
$$\zeta(s)$$
 we denote the Riemann zeta function $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$. Following [1] note that

$$\hat{\sigma}_0(s) = \zeta^2(s), \quad \hat{\sigma}_1(s) = \zeta(s)\zeta(s-1), \quad \hat{\sigma}_2(s) = \zeta^2(s)\zeta(s-1),$$

 $\hat{\omega}(s) = \zeta(s)\zeta(s-1)\zeta(s-2).$

Define sequence $\{\chi(n)\}_{n=1}^{\infty}$ by $\chi(n) = \frac{2}{\sqrt{3}} \sin \frac{2\pi n}{3}$ or equivalently

$$\chi(n) = \begin{cases}
1 \text{ if } n \equiv 1 \mod 3 \\
-1 \text{ if } n \equiv 2 \mod 3 \\
0 \text{ if } n \equiv 0 \mod 3.
\end{cases}$$

For the sake of brevity denote $\vartheta(s) = \hat{\chi}(s)$. Note that $\vartheta(s)$ is the Dirichlet L-series for the multiplicative character $\chi(n)$. Then $\hat{\theta}(s) = \zeta(s)\vartheta(s)$. In more algebraic terms,

Labor 2									
Dirichlet generating	functions	for	the	sequences	s_{H_i}	G(n)	and	$c_{H,G}$	(n).

H G		$\pi_1(G_3)$	$\pi_1(G_5)$
$\pi_1(\mathcal{G}_1)$	^{\$} н,а ĉ _{н,а}	$3^{-s}\zeta(s)\zeta(s-1)\zeta(s-2)$ $3^{-s-1}\zeta(s)(\zeta(s-1)\zeta(s-2)$ $+ 2(1 + 2 \cdot 3^{-s})\zeta(s)\vartheta(s))$	$\begin{array}{l} 6^{-s}\zeta(s)\zeta(s-1)\zeta(s-2)\\ 6^{-s-1}\zeta(s)(\zeta(s-1)\zeta(s-2)\\ +(1+3\cdot2^{-s})\zeta(s)\zeta(s-1)+4(1+3^{-s})\zeta(s)\vartheta(s)) \end{array}$
$\pi_1(\mathcal{G}_2)$	$\hat{s}_{H,G}$ $\hat{c}_{H,G}$	does not exist does not exist	$\frac{3^{-s}(1-2^{-s})\zeta(s)\zeta(s-1)\zeta(s-2)}{3^{-s-1}(1-2^{-s})\zeta(s)^2((1+3\cdot2^{-s})\zeta(s-1)+2\vartheta(s))}$
$\pi_1(\mathcal{G}_3)$	$\hat{s}_{H,G}$ $\hat{c}_{H,G}$	$\binom{(1-3^{-s})\zeta(s)\zeta(s-1)\vartheta(s-1)}{(1-3^{-s})(1+2\cdot3^{-s})\zeta(s)^2\vartheta(s)}$	$2^{-s}(1-3^{-s})\zeta(s)\zeta(s-1)\vartheta(s-1)$ $2^{-s}(1-3^{-s})(1+3^{-s})\zeta(s)^2\vartheta(s)$
$\pi_1(\mathcal{G}_5)$	$\hat{s}_{H,G}$ $\hat{c}_{H,G}$	does not exist does not exist	$(1 - 2^{-s})(1 - 3^{-s})\zeta(s)\zeta(s - 1)\vartheta(s - 1)$ $(1 - 2^{-s})(1 - 3^{-s})\zeta(s)^2\vartheta(s)$ \checkmark

64

Enumeration of coverings

14 / 14