## Enumeration of coverings for closed orientable Euclidean manifolds

## Alexander Mednykh

Sobolev Institute of Mathematics
Novosibirsk State University Tomsk State University,

Tomsk, 03 October 2020

## Coverings

Definition. Consider a manifold $\mathcal{M}$. Two coverings $p_{1}: \mathcal{M}_{1} \rightarrow \mathcal{M}$ and $p_{2}: \mathcal{M}_{2} \rightarrow \mathcal{M}$ are said to be equivalent if there exists a homeomorphism $h: \mathcal{M}_{1} \rightarrow \mathcal{M}_{2}$ such that $p_{1}=p_{2} \circ h$.

$$
\begin{array}{rll}
\mathcal{M}_{1} & \xrightarrow[\text { homeo }]{h} & \mathcal{M}_{2} \\
p_{1} \downarrow & & \downarrow p_{2} \\
\mathcal{M} & \xrightarrow{\text { id }} & \mathcal{M}
\end{array}
$$

## Coverings

Let $p: \mathcal{M}_{1} \rightarrow \mathcal{M}$ be a $n$-fold covering and $\Gamma=\pi_{1}(\mathcal{M})$ be the fundamental group of $\mathcal{M}$. Then there is an embedding

$$
H_{1}=\pi_{1}\left(\mathcal{M}_{1}\right) \underset{\text { index } n}{\subset} \Gamma=\pi_{1}(\mathcal{M})
$$

Two embeddings $H_{1}=\pi_{1}\left(\mathcal{M}_{1}\right) \underset{n}{\subset}$ 「 and $H_{2}=\pi_{1}\left(\mathcal{M}_{2}\right) \subset{ }_{n}$ 「 produce equivalent coverings if and only if $H_{1}$ and $H_{2}$ are conjugate in $\Gamma$.

## Coverings

Consider the three classical cases.
Case 1. Let $S$ be a bordered surface of Euler characteristic $\chi=1-r, r \geq 0$. Than $\Gamma=\pi_{1}(S) \cong F_{r}$ is a free group of rank $r$. A typical example of $S$ is the disc $D_{r}$ with $r$ holes removed:


## Coverings

Case 2. Let $S$ be a closed orientable surface of genus $g \geq 0$. Then

$$
\pi_{1}(S)=\Phi_{g}=\left\langle a_{1}, b_{1}, \ldots, a_{g}, b_{g}: \prod_{i=1}^{g}\left[a_{i}, b_{i}\right]=1\right\rangle
$$



## Coverings

Case 3. Let $S$ be a closed non-orientable surface of genus $p \geq 1$.

$$
\pi_{1}(S)=\Lambda_{p}=\left\langle a_{1}, a_{2}, \ldots, a_{p}: \prod_{i=1}^{p} a_{i}^{2}=1\right\rangle
$$



## Coverings

- Two main problems

From now on we deal with the following two problems.
Problem 1. Find the number $s_{\Gamma}(n)$ of subgroups of index $n$ in the group $\Gamma$.

Problem 2. Find the number $c_{\Gamma}(n)$ of conjugacy classes of subgroups of index $n$ in the group $\Gamma$.

Remark. In the latter case $c_{\Gamma}(n)$ coincides with the number of $n$-fold unbranched non-equivalent coverings of a manifold $\mathcal{M}$ with

$$
\pi_{1}(\mathcal{M}) \equiv \Gamma
$$

## Coverings

- Short history:

Problem 1: Problem 2:

1. $\Gamma=F_{r}$
$\Gamma=\pi_{1}(S), S=D_{r} \quad$ M.Hall (1949)
V.Liskovets (1971)
bordered surface

$$
\begin{equation*}
s_{\Gamma}(n) \tag{n}
\end{equation*}
$$

2. $\Gamma=\Phi_{g}$
$\Gamma=\pi_{1}(S), S=S_{g} \quad$ A.Mednykh (1979) $\quad$ A.Mednykh (1982)
orientable surface
3. $\Gamma=\Lambda_{p}$
$\Gamma=\pi_{1}(S), S=N_{p}$
G.Pozdnyakova, A.Mednykh (1986)
non-orientable surface
4. $\Gamma=\pi_{1}(M)$, where $M$ is
a closed Seifert 3-manifold
V.Liskovets, M.(2000) G.Chelnokov, M.Deryagina, M.(2016)

The present report is a part of the series of our papers devoted to enumeration of finite-sheeted coverings of coverings over closed Euclidean 3-manifolds. These manifolds are also known as flat 3-dimensional manifolds or just Euclidean 3-forms. The class of such manifolds is closely related to the notion of Bieberbach group. Recall that a subgroup of isometries of $\mathbb{R}^{3}$ is called Bieberbach group if it is discrete, cocompact and torsion free. Each 3-form can be represented as a quotient $\mathbb{R}^{3} / \Gamma$ where $\Gamma$ is a Bieberbach group. In this case, $\Gamma$ is isomorphic to the fundamental group of the manifold, that is $\Gamma=\pi_{1}\left(\mathbb{R}^{3} / \Gamma\right)$. Classification of three dimensional Euclidean forms up to homeomorphism is presented in the well-known monograph by J. Wolf. The class of such manifolds consists of six orientable $\mathcal{G}_{1}, \mathcal{G}_{2}, \mathcal{G}_{3}, \mathcal{G}_{4}, \mathcal{G}_{5}, \mathcal{G}_{6}$, and four non-orientable ones $\mathcal{B}_{1}, \mathcal{B}_{2}, \mathcal{B}_{3}, \mathcal{B}_{4}$.

In our previous paper [Deryagina-Chelnokov-M. 2017] we describe isomorphism types of finite index subgroups H in $\pi_{1}\left(\mathcal{B}_{1}\right)$ and $\pi_{1}\left(\mathcal{B}_{2}\right)$.
Further, we calculate the respective numbers $s_{H, G}(n)$ and $c_{H, G}(n)$ for each isomorphism type $H$. The manifolds $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ are uniquely defined among the other non-orientable 3-forms by their homology groups $H 1\left(\mathcal{B}_{1}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ and $H_{1}\left(\mathcal{B}_{2}\right)=\mathbb{Z}_{2}$. In our paper [Chelnokov-M. 2020], similar questions were solved for manifolds $\mathcal{G}_{2}$ and $\mathcal{G}_{4}$ which are uniquely defined among flat compact 3-dimensional orientable manifolds without a boundary by their homology groups $H_{1}\left(\mathcal{G}_{2}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}$ and $H_{1}\left(\mathcal{G}_{4}\right)=\mathbb{Z}_{2} \oplus \mathbb{Z}$. The aim of the present paper published in Journal of Algebra 560 (2020) 48-66 is to investigate $n$-fold coverings over the orientable Euclidean manifolds $\mathcal{G}_{3}$ and $\mathcal{G}_{5}$, whose homology groups are $H_{1}\left(\mathcal{G}_{3}\right)=\mathbb{Z}_{3} \oplus \mathbb{Z}$ and $H_{1}\left(\mathcal{G}_{5}\right)=\mathbb{Z}$.

To state the main result we need the following notations: $s_{H, G}(n)$ is the number of subgroups of index $n$ in the group $G$, isomorphic to the group $H ; c_{H, G}(n)$ is the number conjugacy classes of subgroups of index $n$ in the group $G$, isomorphic to the group $H$. Also we will need the following combinatorial functions: In all cases we consider the function

$$
\begin{gathered}
\sigma_{0}(n)=\sum_{k \mid n} 1, \quad \sigma_{1}(n)=\sum_{k \mid n} k, \quad \sigma_{2}(n)=\sum_{k \mid n} \sigma_{1}(k), \quad \omega(n)=\sum_{k \mid n} k \sigma_{1}(k), \\
\theta(n)=\left|\left\{(p, q) \in \mathbb{Z}^{2} \mid p>0, q \geq 0, p^{2}-p q+q^{2}=n\right\}\right|
\end{gathered}
$$

Equivalently, $\theta(n)=\sum_{k \mid n} \frac{2}{\sqrt{3}} \sin \frac{2 \pi k}{3}$. Also we suppose the above functions vanish if $n \notin \mathbb{N}$.

The first theorem provides the complete solution of the problem of enumeration of subgroups of a given finite index in $\pi_{1}\left(\mathcal{G}_{3}\right)$. For the sake of brevity, in case $H=\pi_{1}\left(\mathcal{G}_{i}\right)$ and $G=\pi_{1}\left(\mathcal{G}_{j}\right)$ we write $s_{i, j}$ and $c_{i, j}$ instead of $s_{H, G}(n)$ and $c_{H, G}(n)$ respectively.

## Theorem

Every subgroup of finite index $n$ in $\pi_{1}\left(\mathcal{G}_{3}\right)$ is isomorphic to either $\pi_{1}\left(\mathcal{G}_{3}\right)$ or $\pi_{1}\left(\mathcal{G}_{1}\right)=\mathbb{Z}^{3}$. The respective numbers of subgroups are
(i) $s_{3,3}(n)=\sum_{k \mid n} k \theta(k)-\sum_{k \left\lvert\, \frac{n}{3}\right.} k \theta(k)$,
(ii) $s_{1,3}(n)=\omega\left(\frac{n}{3}\right)$.

The next theorem provides the number of conjugacy classes of subgroups of index $n$ in $\pi_{1}\left(\mathcal{G}_{3}\right)$ for each isomorphism type. That is, the number of nonequivalent $n$-fold covering $\mathcal{G}_{3}$ which have a prescribe fundamental group.

## Theorem

Let $\mathcal{N} \rightarrow \mathcal{G}_{3}$ be a $n$-fold covering over $\mathcal{G}_{3}$. If $n$ is not divisible by 3 then $\mathcal{N}$ is homeomorphic to $\mathcal{G}_{3}$. If $n$ is divisible by 3 then $\mathcal{N}$ is homeomorphic to either $\mathcal{G}_{3}$ or $\mathcal{G}_{1}$. The corresponding numbers of nonequivalent coverings are given by the following formulas:
(i) $c_{3,3}(n)=\sum_{k \mid n} \theta(k)+\sum_{k \left\lvert\, \frac{n}{3}\right.} \theta(k)-2 \sum_{k \left\lvert\, \frac{n}{9}\right.} \theta(k)$
(ii) $c_{1,3}(n)=\frac{1}{3}\left(\omega\left(\frac{n}{3}\right)+2 \sum_{k \left\lvert\, \frac{n}{3}\right.} \theta(k)+4 \sum_{k \left\lvert\, \frac{n}{9}\right.} \theta(k)\right)$

## Appendix 2

Given a sequence $\{f(n)\}_{n=1}^{\infty}$, the formal power series

$$
\widehat{f}(s)=\sum_{n=1}^{\infty} \frac{f(n)}{n^{s}}
$$

is called a Dirichlet generating function for $\{f(n)\}_{n=1}^{\infty}$. To reconstruct the sequence $f(n)$ from $\widehat{f}(s)$ one can use Perron's formula ([1], Th. 11.17). Given sequences $f(n)$ and $g(n)$ we call their convolution $(f * g)(n)=\sum_{k \mid n} f(k) g\left(\frac{n}{k}\right)$. In terms of Dirichlet generating series the convolution of sequences corresponds to the multiplication of generating series $\widehat{f * g}(s)=\widehat{f}(s) \widehat{g}(s)$. For the above facts see, for example, ([1], Ch. 11-12).

Here we present the Dirichlet generating functions for the sequences $s_{H, G}(n)$ and $c_{H, G}(n)$. Since Theorems $1-4$ provide the explicit formulas, the remainder is done by direct calculations.

By $\zeta(s)$ we denote the Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$. Following [1] note that

$$
\begin{aligned}
\widehat{\sigma}_{0}(s)=\zeta^{2}(s), \quad \widehat{\sigma}_{1}(s) & =\zeta(s) \zeta(s-1), \quad \widehat{\sigma}_{2}(s)=\zeta^{2}(s) \zeta(s-1) \\
\widehat{\omega}(s) & =\zeta(s) \zeta(s-1) \zeta(s-2)
\end{aligned}
$$

Define sequence $\{\chi(n)\}_{n=1}^{\infty}$ by $\chi(n)=\frac{2}{\sqrt{3}} \sin \frac{2 \pi n}{3}$ or equivalently

$$
\chi(n)=\left\{\begin{array}{rc}
1 \text { if } n \equiv 1 & \bmod 3 \\
-1 \text { if } n \equiv 2 & \bmod 3 \\
0 \text { if } n \equiv 0 & \bmod 3
\end{array}\right.
$$

For the sake of brevity denote $\vartheta(s)=\widehat{\chi}(s)$. Note that $\vartheta(s)$ is the Dirichlet L-series for the multiplicative character $\chi(n)$. Then $\hat{\theta}(s)=\zeta(s) \vartheta(s)$. In more algebraic terms,

| $\mathrm{H}^{G}$ |  | $\pi_{1}\left(\mathcal{G}_{3}\right)$ | $\pi_{1}\left(\mathcal{G}_{5}\right)$ |
| :---: | :---: | :---: | :---: |
| $\pi_{1}\left(\mathcal{G}_{1}\right)$ | $\begin{aligned} & \hat{\bar{s}}_{H, G} \\ & \hat{c}_{H, G} \end{aligned}$ | $\begin{aligned} & 3^{-x} \zeta(s) \zeta(s-1) \zeta(s-2) \\ & 3^{-x-1} \zeta(s)(\zeta(s-1) \zeta(s-2) \\ & \left.+2\left(1+2 \cdot 3^{-x}\right) \zeta(s) \vartheta(s)\right) \end{aligned}$ | $\begin{aligned} & 6^{-x} \zeta(s) \zeta(s-1) \zeta(s-2) \\ & 6^{-s-1} \zeta(s)(\zeta(s-1) \zeta(s-2) \\ & \left.+\left(1+3 \cdot 2^{-x}\right) \zeta(s) \zeta(s-1)+4\left(1+3^{-x}\right) \zeta(s) \vartheta(s)\right) \end{aligned}$ |
| $\pi_{1}\left(\mathcal{G}_{2}\right)$ | $\begin{aligned} & \hat{s}_{H, G} \\ & \hat{c}_{H, G} \end{aligned}$ | does not exist does not exist | $\begin{aligned} & 3^{-x}\left(1-2^{-x}\right) \zeta(s) \zeta(s-1) \zeta(s-2) \\ & 3^{-x-1}\left(1-2^{-x}\right) \zeta(s)^{2}\left(\left(1+3 \cdot 2^{-x}\right) \zeta(s-1)+2 \vartheta(s)\right) \end{aligned}$ |
| $\pi_{1}\left(\mathcal{G}_{3}\right)$ | $\begin{aligned} & \hat{s}_{H, G} \\ & \hat{c}_{H, G} \end{aligned}$ | $\begin{aligned} & \left(1-3^{-x}\right) \zeta(s) \zeta(s-1) \vartheta(s-1) \\ & \left(1-3^{-x}\right)\left(1+2 \cdot 3^{-x}\right) \zeta(s)^{2} \vartheta(s) \end{aligned}$ | $\begin{aligned} & 2^{-x}\left(1-3^{-x}\right) \zeta(s) \zeta(s-1) \vartheta(s-1) \\ & 2^{-x}\left(1-3^{-x}\right)\left(1+3^{-x}\right) \zeta(s)^{2} \vartheta(s) \end{aligned}$ |
| $\pi_{1}\left(\mathcal{G}_{5}\right)$ | $\begin{aligned} & \hat{s}_{H, G} \\ & \hat{c}_{H, G} \\ & \hline \end{aligned}$ | does not exist does not exist | $\begin{aligned} & \left(1-2^{-x}\right)\left(1-3^{-x}\right) \zeta(s) \zeta(s-1) \vartheta(s-1) \\ & \left(1-2^{-x}\right)\left(1-3^{-x}\right) \zeta(s)^{2} \vartheta(s) \end{aligned}$ |

