An Unknotting Invariant for Welded Knots

Andrei Vesnin

Third International Conference
"Groups and Quandles in Low-Dimensional Topology"
Based on the preprint joint with K. Kaur, A. Gill, and M. Prabhakar

Welded Reidemeister moves

RIII

VRIII

Classical Reidemeister moves and Virtual Reidemeister moves

Forbidden moves F_{1} and F_{2}

Twist move

Twist move of type T_{1} and type T_{2}.

Theorem. Twist move is an unknotting operation for welded knots.

Realization of F_{2}-move

Composition of two twist moves

Proposition. If D^{\prime} is a diagram obtained from a welded knot diagram D by applying a twist move twice at the same crossing $c \in C(D)$, then D^{\prime} is equivalent to D.

Unknotting twist number

The unknotting twist number $u t(K)$ is the minimum number of twist moves required, taken over all welded knot diagrams representing K, to convert K into the trivial welded knot,

$$
u t(K)=\min \{u t(D) \mid D \in[K]\} .
$$

Let $\mathbf{b}\left(2 n+\frac{1}{2}\right)$ be a two-bridge knot with the rational parameter $2 n+\frac{1}{2}$, for integer $n \geq 1$.

Proposition For any integer $n \geq 1$ we have $u t\left(\mathbf{b}\left(2 n+\frac{1}{2}\right)\right)=1$.

Welded unknotting number

The welded unknotting number $u_{w}(K)$ is the minimum number of classical crossings to welded crossings changes, required, taken over all welded knot diagrams representing K, to convert K into the trivial welded knot,

$$
u_{w}(K)=\min \left\{u_{w}(D) \mid D \in[K]\right\} .
$$

Warping degree

The warping degree was introduced by A. Shimizu $(2009,2010)$ for classical knots and links.

Let D be an oriented welded knot diagram of K, choose a non-crossing point a on D (based point). The warping degree $d\left(D_{a}\right)$ of D_{a} is the number of classical crossings encounter first at under crossing point while starting from a and traverse along the orientation of D_{a}.

The warping degree $d(D)=\min \left\{d\left(D_{a} \mid a \in D\right\}\right.$. Let $-D$ be the inverse of D. The warping degree of a knot K is

$$
d(K)=\min \{d(D), d(-D) \mid D \in[K]\} .
$$

Low and upper bounds

Theorem. If K is a welded knot, then

$$
\frac{1}{2} u_{w}(K) \leq u t(K) \leq d(K) .
$$

Twist distance

Define a twist-distance $d_{T}\left(K, K^{\prime}\right)$ between two welded knots K and K^{\prime} as the minimum number of twist moves required to convert D into D^{\prime}, where minimum is taken over all diagrams D of K and D^{\prime} of K^{\prime}.

Gordian complex \mathcal{G}_{T} of welded knots by twist move is defined by considering the set of all welded knot isotopy classes as vertex set of \mathcal{G}_{T} and a set of welded knots $\left\{K_{0}, \ldots, K_{n}\right\}$ spans an n-simplex if and only if $d_{T}\left(K_{i}, K_{j}\right)=1$ for all $i \neq j \in\{0,1, \ldots, n\}$.

Gordian complex

Theorem. The Gordian complex \mathcal{G}_{T} contains an infinite family of welded knots $\left\{W K_{n}\right\}_{n \geq 0}$ satisfying $d_{T}\left(W K_{m}, W K_{n}\right) \leq 1$ for distinct integer $m, n \geq 0$.

Welded knot $W K_{n}$.

Applying of twist move.
Question. Are all welded knots $W K_{n}$ distinct?

Thank you!

