

An Unknotting Invariant for Welded Knots

Andrei Vesnin Third International Conference "Groups and Quandles in Low-Dimensional Topology"

Based on the preprint joint with K. Kaur, A. Gill, and M. Prabhakar

Welded Reidemeister moves

Classical Reidemeister moves and Virtual Reidemeister moves

Forbidden moves F_1 and F_2

Twist move

Twist move of type T_1 and type T_2 .

Theorem. Twist move is an unknotting operation for welded knots.

Realization of *F*₂**-move**

Composition of two twist moves

Proposition. If D' is a diagram obtained from a welded knot diagram D by applying a twist move twice at the same crossing $c \in C(D)$, then D' is equivalent to D.

The unknotting twist number ut(K) is the minimum number of twist moves required, taken over all welded knot diagrams representing K, to convert K into the trivial welded knot,

 $ut(K) = \min\{ut(D) \mid D \in [K]\}.$

Let $\mathbf{b}(2n+\frac{1}{2})$ be a two-bridge knot with the rational parameter $2n+\frac{1}{2}$, for integer $n \ge 1$.

Proposition For any integer $n \ge 1$ we have $ut(\mathbf{b}(2n + \frac{1}{2})) = 1$.

The welded unknotting number $u_w(K)$ is the minimum number of classical crossings to welded crossings changes, required, taken over all welded knot diagrams representing K, to convert K into the trivial welded knot,

 $u_w(K) = \min\{u_w(D) \mid D \in [K]\}.$

The warping degree was introduced by A. Shimizu (2009, 2010) for classical knots and links.

Let *D* be an oriented welded knot diagram of *K*, choose a non-crossing point *a* on *D* (based point). The warping degree $d(D_a)$ of D_a is the number of classical crossings encounter first at under crossing point while starting from *a* and traverse along the orientation of D_a .

The warping degree $d(D) = \min\{d(D_a | a \in D\})$. Let -D be the inverse of D. The warping degree of a knot K is

 $d(K) = \min\{d(D), d(-D) \mid D \in [K]\}.$

Theorem. If K is a welded knot, then

$$\frac{1}{2}u_w(K) \leq ut(K) \leq d(K).$$

Define a twist-distance $d_T(K, K')$ between two welded knots K and K' as the minimum number of twist moves required to convert D into D', where minimum is taken over all diagrams D of K and D' of K'.

Gordian complex \mathcal{G}_T of welded knots by twist move is defined by considering the set of all welded knot isotopy classes as vertex set of \mathcal{G}_T and a set of welded knots $\{K_0, ..., K_n\}$ spans an *n*-simplex if and only if $d_T(K_i, K_j) = 1$ for all $i \neq j \in \{0, 1, ..., n\}$.

Gordian complex

Theorem. The Gordian complex \mathcal{G}_T contains an infinite family of welded knots $\{WK_n\}_{n\geq 0}$ satisfying $d_T(WK_m, WK_n) \leq 1$ for distinct integer $m, n \geq 0$.

Question. Are all welded knots WK_n distinct?

Thank you!