Residual properties of virtual knot groups

Valeriy Bardakov

Sobolev Institute of Mathematics, Novosibirsk

Tomsk
June 26-27, 2018

Braid group and Artin representation

Braid group B_{n} on $n \geq 2$ strands is generated by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ and is defined by relations

$$
\begin{align*}
\sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} & \text { for } i=1,2, \ldots, n-2 \tag{1}\\
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i} & \text { for }|i-j| \geq 2 .
\end{align*}
$$

$\begin{array}{lllll}1 & i-1 & i & i+1 & i+2\end{array}$
Figure: Geometric interpretation of σ_{i}

Representation of B_{n} by automorphisms of free group

The Artin representation

$$
\varphi_{A}: B_{n} \longrightarrow \operatorname{Aut}\left(F_{n}\right),
$$

where $F_{n}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ is a free group, is defined by the rule

$$
\varphi_{A}\left(\sigma_{i}\right):\left\{\begin{array}{l}
x_{i} \longmapsto x_{i} x_{i+1} x_{i}^{-1}, \\
x_{i+1} \longmapsto x_{i},
\end{array}\right.
$$

Here and onward we point out only nontrivial actions on generators assuming that other generators are fixed.

Theorem [Artin]: $\operatorname{Ker}\left(\varphi_{A}\right)=1$.

Group of link

Let \mathcal{L} be the set of all links in \mathbb{R}^{3}.
A group $G(L)$ of a link $L \in \mathcal{L}$ is a group $\pi_{1}\left(\mathbb{R}^{3} \backslash L\right)$.
Theorem [Artin]: If L is isotopic to $\hat{\beta}$, where $\beta \in B_{n}$, then

$$
G(L)=\left\langle x_{1}, x_{2}, \ldots, x_{n} \| x_{i}=\varphi_{A}(\beta)\left(x_{i}\right), \quad i=1,2, \ldots, n\right\rangle .
$$

The virtual braid group $V B_{n}$ is presented by L. Kauffman (1996).
V . Vershinin constructed the more compact system of defining relations for $V B_{n}$.
$V B_{n}$ is generated by the classical braid group $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle$ and the permutation group $S_{n}=\left\langle\rho_{1}, \ldots, \rho_{n-1}\right\rangle$. Generators $\rho_{i}, i=1, \ldots, n-1$, satisfy the following relations:

$$
\begin{align*}
\rho_{i}^{2} & =1 & & \text { for } i=1,2, \ldots, n-1, \tag{3}\\
\rho_{i} \rho_{j} & =\rho_{j} \rho_{i} & & \text { for }|i-j| \geq 2, \\
\rho_{i} \rho_{i+1} \rho_{i} & =\rho_{i+1} \rho_{i} \rho_{i+1} & & \text { for } i=1,2 \ldots, n-2 .
\end{align*}
$$

Other defining relations of the group $V B_{n}$ are mixed and they are as follows

$$
\begin{align*}
\sigma_{i} \rho_{j} & =\rho_{j} \sigma_{i} \tag{6}\\
+1 \sigma_{i} & =\sigma_{i+1} \rho_{i} \rho_{i+1}
\end{align*} \quad \text { for }|i-j| \geq 2, ~ f o r ~ i=1,2, \ldots, n-2 .
$$

Geometric interpretation

Figure: Geometric interpretation of ρ_{i}

Problems

- Construct a faithfull representation

$$
\psi: V B_{n} \longrightarrow \operatorname{Aut}(H),
$$

where H is a "good" group.

- Define a group of virtual links.

New representation

We consider the free product $F_{n, 2 n+1}=F_{n} * \mathbb{Z}^{2 n+1}$, where F_{n} is a free group of the rank n generated by elements $x_{1}, x_{2}, \ldots, x_{n}$ and $\mathbb{Z}^{2 n+1}$ is a free abelian group of the rank $2 n+1$ freely generated by elements $u_{1}, u_{2}, \ldots, u_{n}, v_{0}, v_{1}, v_{2}, \ldots, v_{n}$.

Theorem 1 [V. B. - Yu. Mikhalchishina - M. Neshchadim, 2017].
The following mapping $\varphi_{M}: V B_{n} \longrightarrow \operatorname{Aut}\left(F_{n, 2 n+1}\right)$ defined by the action on the generators:

$$
\begin{gathered}
\varphi_{M}\left(\sigma_{i}\right):\left\{\begin{array}{l}
x_{i} \longmapsto x_{i} x_{i+1}^{u_{i}} x_{i}^{-v_{0} u_{i+1}}, \quad \varphi_{M}\left(\sigma_{i}\right):\left\{\begin{array}{l}
u_{i} \longmapsto u_{i+1}, \\
u_{i+1} \longmapsto u_{i}
\end{array}\right. \\
x_{i+1} \longmapsto
\end{array}\right. \\
\varphi_{M}\left(\sigma_{i}\right):\left\{\begin{array}{l}
v_{i} \longmapsto v_{i+1}, \\
v_{i+1} \longmapsto v_{i},
\end{array}\right. \\
\varphi_{M}\left(\rho_{i}\right):\left\{\begin{array}{l}
x_{i} \longmapsto x_{i+1}^{v_{i}^{-1}} \\
x_{i+1} \longmapsto x_{i}^{v_{i+1}},
\end{array} \varphi_{M}\left(\rho_{i}\right):\left\{\begin{array}{l}
u_{i} \longmapsto u_{i+1}, \\
u_{i+1} \longmapsto u_{i},
\end{array}\right.\right. \\
\varphi_{M}\left(\rho_{i}\right):\left\{\begin{array}{l}
v_{i} \longmapsto v_{i+1}, \\
v_{i+1} \longmapsto v_{i},
\end{array}\right.
\end{gathered}
$$

is provided a representation of $V B_{n}$ into $\operatorname{Aut}\left(F_{n, 2 n+1}\right)$, which generalizes all known representations.

Extension of the Artin representation

The constructed representation φ_{M} is not an extension of the Artin representation.
It is turned out that the representation φ_{M} is equivalent to the simpler one which is an extension of the Artin representation.

Let $F_{n, n}=F_{n} * \mathbb{Z}^{n}$, where $F_{n}=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ is the free group and $\mathbb{Z}^{n}=\left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ is the free abelian group of the rank n.

Theorem 2 [V. B. - Yu. Mikhalchishina - M. Neshchadim, 2017].
The representation $\widetilde{\varphi}_{M}: V B_{n} \longrightarrow \operatorname{Aut}\left(F_{n, n}\right)$ defined by the action on the generators

$$
\begin{gathered}
\widetilde{\varphi}_{M}\left(\sigma_{i}\right):\left\{\begin{array}{l}
y_{i} \longmapsto y_{i} y_{i+1} y_{i}^{-1}, \\
y_{i+1} \longmapsto y_{i},
\end{array} \quad \tilde{\varphi}_{M}\left(\sigma_{i}\right):\left\{\begin{array}{l}
v_{i} \longmapsto v_{i+1} \\
v_{i+1} \longmapsto v_{i}
\end{array}\right.\right. \\
\widetilde{\varphi}_{M}\left(\rho_{i}\right):\left\{\begin{array}{l}
y_{i} \longmapsto y_{i+1}^{v_{i}^{-1}} \\
y_{i+1} \longmapsto y_{i}
\end{array}, \quad \widetilde{\varphi}_{M}\left(\rho_{i}\right):\left\{\begin{array}{l}
v_{i} \longmapsto v_{i+1} \\
v_{i+1} \longmapsto
\end{array}\right.\right.
\end{gathered}
$$

is equivalent to the representation φ_{M}.

Groups of virtual link

Assume that we have a representation $\psi: V B_{n} \longrightarrow \operatorname{Aut}(H)$ of the virtual braid group into the automorphism group of some group $H=\left\langle h_{1}, h_{2}, \ldots, h_{m} \| \mathcal{R}\right\rangle$, where \mathcal{R} is the set of defining relations.

The following group is assigned to the virtual braid $\beta \in V B_{n}$:

$$
G_{\psi}(\beta)=\left\langle h_{1}, h_{2}, \ldots, h_{m} \| \mathcal{R}, h_{i}=\psi(\beta)\left(h_{i}\right), \quad i=1,2, \ldots, m\right\rangle .
$$

The group G_{ψ} is an invariant of virtual links if the group $G_{\psi}(\beta)$ is isomorphic to $G_{\psi}\left(\beta^{\prime}\right)$ for each braid β^{\prime} such that the links $\widehat{\beta}$ and $\widehat{\beta^{\prime}}$ are equivalent.

In the paper: J. S. Carter, D. Silver, S. Williams, Invariants of links in thickened surfaces, Algebr. Geom. Topol., 14 (2014), no. 3, 1377-1394, suggested other approach to the definition of virtual link groups, which used interpretation of virtual link as a classical link in a thin surface.

This approach is used for the previously defined representation φ_{M}. Given $\beta \in V B_{n}$, the group of the braid β is the following group
$G_{M}(\beta)=\left\langle x_{1}, x_{2}, \ldots, x_{n}, u_{1}, u_{2}, \ldots, u_{n}, v_{0}, v_{1}, \ldots, v_{n} \|\left[u_{i}, u_{j}\right]=\left[v_{k}, v_{l}\right]=\left[u_{i}, v_{k}\right]=1\right.$,
$x_{i}=\varphi_{M}(\beta)\left(x_{i}\right), \quad u_{i}=\varphi_{M}(\beta)\left(u_{i}\right), \quad v_{i}=\varphi_{M}(\beta)\left(v_{i}\right)$,
$i, j=1,2, \ldots, n, k, l=0,1, \ldots, n\rangle$.

Theorem 3 [V. B. - Yu. Mikhalchishina - M. Neshchadim, 2017].
Given $\beta \in V B_{n}$ and $\beta^{\prime} \in V B_{m}$ the two virtual braids such that theirs closures define the same link L, then $G_{M}(\beta) \cong G_{M}\left(\beta^{\prime}\right)$.

Extensions of Wada representations

Yu. Mikhalchishina (2017) defined the following three representations of the virtual braid group $V B_{n}$ into $\operatorname{Aut}\left(F_{n+1}\right)$, where $F_{n+1}=\left\langle y, x_{1}, x_{2}, \ldots, x_{n}\right\rangle$.

1. The representation $W_{1, r}, r>0$ is defined by the action on the generators

$$
W_{1, r}\left(\sigma_{i}\right):\left\{\begin{array}{l}
x_{i} \longmapsto x_{i}^{r} x_{i+1} x_{i}^{-r}, \\
x_{i+1} \longmapsto x_{i},
\end{array} \quad W_{1, r}\left(\rho_{i}\right):\left\{\begin{array}{l}
x_{i} \longmapsto x_{i+1}^{y^{-1}} \\
x_{i+1} \longmapsto x_{i}^{y}
\end{array}\right.\right.
$$

2. The representation W_{2} is defined by the action on the generators

$$
W_{2}\left(\sigma_{i}\right):\left\{\begin{array}{l}
x_{i} \longmapsto x_{i} x_{i+1}^{-1} x_{i}, \\
x_{i+1} \longmapsto x_{i},
\end{array} \quad W_{2}\left(\rho_{i}\right):\left\{\begin{array}{l}
x_{i} \longmapsto x_{i+1}^{y^{-1}}, \\
x_{i+1} \longmapsto x_{i}^{y} .
\end{array}\right.\right.
$$

Extensions of Wada representations

3. The representation W_{3} is defined by the action on the generators

$$
W_{3}\left(\sigma_{i}\right):\left\{\begin{array}{l}
x_{i} \longmapsto x_{i}^{2} x_{i+1}, \\
x_{i+1} \longmapsto x_{i+1}^{-1} x_{i}^{-1} x_{i+1},
\end{array} \quad W_{3}\left(\rho_{i}\right):\left\{\begin{array}{l}
x_{i} \longmapsto x_{i+1}^{y^{-1}}, \\
x_{i+1} \longmapsto x_{i}^{y} .
\end{array}\right.\right.
$$

These representations extend Wada representations $w_{1, r}, r>0, w_{2}, w_{3}$ of B_{n} into $\operatorname{Aut}\left(F_{n}\right)$, where $F_{n}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ is a free group of rank n.

Yu. A. Mikhalchishina for each virtual link defined three types of groups : $G_{1, r}(L)$, $G_{2}(L)$ and $G_{3}(L)$ that correspond to described representations. He proved that these groups are invariants of a virtual link L.

The Kishino knot is a non-trivial knot that is the connected sum of two trivial knots.

Figure: Kishino knot

Yu. Mikhalchishina proved that groups $G_{1, r}(K i)$ and $G_{2}(K i)$ cannot distinguish the Kishino knot $K i$ from the trivial one. She formulated the question: whether the group $G_{3}(K i)$ is able to distinguish the Kishino knot from the trivial one or not?

Note that the group $G_{3}(U)$ of the trivial knot U is isomorphic to F_{2}.
Theorem 3 [V. B. - Yu. Mikhalchishina - M. Neshchadim, ArXiv, 2018].
The group $G=G_{3}(K i)$ having generators a, b, c, d and the system of defining relations

$$
\begin{gathered}
d^{-1} b^{-d} c^{-2 d^{-1}} b^{-d} c^{-2 d^{-1}} a a^{-2 d} d=a^{-1} b^{-d} c^{-2 d^{-1}} a \\
c^{-1} b c=b^{-d} c^{d^{-1}} b^{d} \\
c=b^{-d} c^{-2 d^{-1}} b^{-d} c^{-2 d^{-1}} a a^{-d} a^{-1} c^{2 d^{-1}} b^{2 d}
\end{gathered}
$$

is not isomorphic to the free group of rank 2.

A non trivial group G is called residually nilpotent if for any $1 \neq g \in G$ there is a nilpotent group N and a homomorphism $\varphi: G \longrightarrow N$ such that $\varphi(g) \neq 1$.

Note that if K is a non-trivial classical knot then its group $G(K)$ is not residually nilpotent since $[G(K), G(K)]=[[G(K), G(K)], G(K)]$.

For a group G define its transfinite lower central series

$$
G=\gamma_{1}(G) \geq \gamma_{2}(G) \geq \ldots \geq \gamma_{\omega}(G) \geq \gamma_{\omega+1}(G) \geq \ldots
$$

where

$$
\gamma_{\alpha+1}(G)=\left\langle\left[g_{\alpha}, g\right] \mid g_{\alpha} \in \gamma_{\alpha}(G), g \in G\right\rangle
$$

and if α is a limit ordinal, then

$$
\gamma_{\alpha}(G)=\bigcap_{\beta<\alpha} \gamma_{\beta}(G)
$$

The minimal α such that $\gamma_{\alpha}(G)=1$ is called the class of G.

Residually nilpotent groups

If class of G is a finite number, then G is nilpotent. If class of G is ω, then G is residually nilpotent.

Example

1) (W. Magnus) If F is a non-abelian free group, then it is not nilpotent, but is residually nilpotent.
2) (A. I. Malcev, 1949) For any ordinal α there is a group of class α.
T. D. Cochran in 1990 formulated a question on residually nilpotent of link groups.

Theorem 3 [V. B. - R. Mikhailov, 2007].

1) If L is Whaithed link or Borromean rings, then $G(L)$ is residually nilpotent.
2) There exists a 2-component 2 -bridge link whose group is not residually nilpotent.
3) Each link in \mathbb{S}^{3} is a sublink of some link whose link group is residually nilpotent.

For a definition of Milnor's invariant of a link L one can use the quotients $G(L) / \gamma_{m}(G(L))$ of link group by some term of the lower central series.

Magnus constructed a representation of the free group $F_{n}=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ into the ring of formal power series $\mathbb{Z}\left[\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right]$ of noncommutative variables $X_{1}, X_{2}, \ldots, X_{n}$ defined by the action on generators:

$$
x_{i} \mapsto 1+X_{i}, \quad i=1,2, \ldots, n
$$

In that case inverse elements of generators go to the following formal power series

$$
x_{i}^{-1} \mapsto 1-X_{i}+X_{i}^{2}-X_{i}^{3}+\ldots, \quad i=1,2, \ldots, n
$$

The representation defined in that manner is faithful (i. e. its kernel is trivial).

Moreover, it remains being faithful if the ring $\mathbb{Z}\left[\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right]$ is replaced by the quotient ring $\mathbb{Z}\left[\left[X_{1}, X_{2}, \ldots, X_{n}\right]\right] /\left\langle X_{1}^{2}, X_{2}^{2}, \ldots, X_{n}^{2}\right\rangle$ by the two-sided ideal generated by elements $X_{1}^{2}, X_{2}^{2}, \ldots, X_{n}^{2}$.

Let

$$
\mathcal{P}=\left\langle x_{1}, \ldots, x_{n} \| r_{1}, \ldots, r_{m}\right\rangle
$$

be some finite presentation of the group G and $A_{n}=\mathbb{Q}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ is an algebra of formal power series of noncommutative variables X_{1}, \ldots, X_{n} over the field of rational numbers. Define series $f_{j}, j=1, \ldots, m$, in the algebra A_{n} by equalities

$$
f_{j}=r_{j}\left(1+X_{1}, \ldots, 1+X_{n}\right)-1, \quad j=1, \ldots, m
$$

Proposition [V. B. - Yu. Mikhalchishina - M. Neshchadim, ArXiv 2018].
The quotient algebra $A_{n} /\left\langle f_{1}, \ldots, f_{m}\right\rangle$ is an invariant of the group G, i. e. it does not depend on the explicit presentation.

Representations of virtual link groups

Let L be a virtual link and

$$
G(L)=\left\langle x_{1}, \ldots, x_{n} \| \mid r_{1}, \ldots, r_{m}\right\rangle
$$

its group.

Corollary [V. B. - Yu. Mikhalchishina - M. Neshchadim, ArXiv 2018].
The quotient algebra $A_{n} /\left\langle f_{1}, \ldots, f_{m}\right\rangle$ is an invariant of L.

In this part I will formulate some results that we have found with Neha Nanda and M. Neshchadim.

Figure: Knot K_{1}

Groups of virtual knots with small number of crossings: knot K_{1}

The group $G\left(K_{1}\right)$ has the presentation

$$
G\left(K_{1}\right)=\left\langle x, y \|\left[x^{-1}, y, x^{-1}, y x^{-1}\right]=1\right\rangle .
$$

Proposition 1.

- Considering the quotient of $G\left(K_{1}\right)$ by 5 -th term of the lower central series we can prove that K_{1} is non-trivial:

$$
\begin{gathered}
G\left(K_{1}\right) / \gamma_{4} G\left(K_{1}\right) \cong F_{2} / \gamma_{4} F_{2}, \\
\gamma_{4} G\left(K_{1}\right) / \gamma_{5} G\left(K_{1}\right) \cong \mathbb{Z}^{2}, \quad G\left(K_{1}\right) / \gamma_{5} G\left(K_{1}\right) \not \not F_{2} / \gamma_{5} F_{2} .
\end{gathered}
$$

- $G\left(K_{1}\right)=F_{3} \lambda \mathbb{Z}$ is an extension of a free group F_{3} of rank 3 by $\mathbb{Z}=\langle x\rangle$.
- $G\left(K_{1}\right)$ is residually nilpotent.

K2
Figure: Knot K_{2}

The group $G\left(K_{2}\right)$ has the presentation

$$
G\left(K_{2}\right)=\left\langle x, y \|\left[x^{y^{-1} x y^{-1}} x^{y x^{-1} y}, x\right]=1\right\rangle .
$$

Groups of virtual knots with small number of crossings: knot K_{2}

Proposition 2.

- Considering the quotient of $G\left(K_{2}\right)$ by 5 -th term of the lower central series we can prove that K_{2} is non-trivial:

$$
\begin{gathered}
G\left(K_{2}\right) / \gamma_{4} G\left(K_{2}\right) \cong F_{2} / \gamma_{4} F_{2}, \\
\gamma_{4} G\left(K_{2}\right) / \gamma_{5} G\left(K_{2}\right) \cong \mathbb{Z}^{2} \times \mathbb{Z}_{4}, \quad G\left(K_{2}\right) / \gamma_{5} G\left(K_{2}\right) \not \not F_{2} / \gamma_{5} F_{2} .
\end{gathered}
$$

- $G\left(K_{2}\right)=F_{5} \lambda \mathbb{Z}$ is an extension of a free group F_{5} of rank 5 by $\mathbb{Z}=\langle x\rangle$.
- $\gamma_{\omega} G\left(K_{2}\right) \subseteq F_{5}^{\prime}, \gamma_{\omega^{2}} G\left(K_{2}\right)=1$.

Question.

Is it true that $\gamma_{\alpha} G\left(K_{2}\right) \neq 1$ for all $\alpha<\omega^{2}$?

K3
Figure: Knot K_{3}

The group $G\left(K_{3}\right)$ has the presentation

$$
G\left(K_{3}\right)=\left\langle x, y \| x=x^{-y^{2}} x^{-1} x^{-y^{-2}} x x^{y^{-2}} x x^{y^{2}}\right\rangle .
$$

Groups of virtual knots with small number of crossings: knot K_{3}

Proposition 3.

- Considering the quotient of $G\left(K_{3}\right)$ by 5 -th term of the lower central series we can prove that K_{2} is non-trivial:

$$
\begin{gathered}
G\left(K_{3}\right) / \gamma_{4} G\left(K_{3}\right) \cong F_{2} / \gamma_{4} F_{2}, \\
\gamma_{4} G\left(K_{3}\right) / \gamma_{5} G\left(K_{3}\right) \cong \mathbb{Z}^{2} \times \mathbb{Z}_{4}, \quad G\left(K_{3}\right) / \gamma_{5} G\left(K_{3}\right) \not \not F_{2} / \gamma_{5} F_{2} .
\end{gathered}
$$

- $G\left(K_{3}\right)=H_{3} \lambda \mathbb{Z}$, where $\mathbb{Z}=\langle y\rangle, x_{k}^{y}=x_{k+1}, k \in \mathbb{Z}$,

$$
H_{3}=\ldots \underset{B_{k}}{*} A_{k} \underset{B_{k+1}}{*} A_{k+1} \underset{B_{k+2}}{*} A_{k+2} \underset{B_{k+3}}{*} \ldots,
$$

and $A_{k}=\left\langle x_{k}, x_{k+1}, x_{k+2}, x_{k+3}, x_{k+4}, \|\left[x_{k}, x_{k+2}\right]=\left[x_{k+2}^{-1}, x_{k+4}^{-1}\right]\right\rangle$, $B_{k}=\left\langle x_{k}, x_{k+1}, x_{k+2}, x_{k+3}\right\rangle \cong F_{4}$.

Figure: Knot K_{4}

The group $G\left(K_{4}\right)$ has the presentation

$$
G\left(K_{4}\right)=\left\langle x_{1}, x_{2}, y \| x_{1} x_{2}^{-1}=\left[x_{2}^{-y^{-2}}, x_{1}\right], x_{2}^{-1} x_{1}=\left[x_{1}^{-y^{2}}, x_{2}^{-1}\right]\right\rangle .
$$

This group has two defining relations.

Proposition 4.

$$
G\left(K_{4}\right) / \gamma_{4} G\left(K_{4}\right) \cong F_{2} / \gamma_{4} F_{2} .
$$

Questions.

- Is it possible to prove that K_{4} is non-trivial, considering the quotient $G\left(K_{4}\right) /\left[\gamma_{2} G\left(K_{4}\right), \gamma_{2} G\left(K_{4}\right)\right]$?
- Is it true that $G\left(K_{4}\right)$ is a parafree group?

Recall that a group is said to be parafree if its quotients by the terms of its lower central series are the same as those of a free group and if it is residually nilpotent.

Open Problems

- Let K be a virtual knot and its group $G_{M}(K)$ is non isomorphic to the group of trivial knot. Is it true that if $\gamma_{2} G_{M}(K) \neq \gamma_{3} G_{M}(K)$, then K is not equivalent to a classical knot?
- Construct a non-trivial virtual knot K such that $G_{3}(K) \cong F_{2}$.

Thank you!

