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Introduction

1. We confirm Anatole Katok’s expression: Billiard table is a playground for mathematicians.

Attractions available on the playground:

Birkhoff billiards B; Angular billiards A; Magnetic billiards M.

Other toys:

Outer billiards, Outer magnetic billiards, Andreev billiards...

2. Integrable billiards. Amazingly in all integrable examples, integrals are polynomial in momenta.

Integrals for the (A) Circle and (B) Ellipse:

In case A :

F (x, v) = xvy − yvx,

is the momentum of (x, v) with respect to 0.

In case B:

F (x, v) = ((x− c)vy − yvx)((x+ c)vy − yvx)

is the product of two momenta with respect to the foci (±c, 0)) of the ellipse.

3. Algebraic version of Birkhoff-Poritsky conjecture: The only billiards admitting polynomial in v

integrals are Circles and Ellipses
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Similarity with Outer billiards

Outer billiard (Neumann, Moser, Tabachnikov)

T
2(A)

T (A)
A

Figure 1: Outer billiard map.

Let γ is given by {F = 0} then

F (x− εFy, y + εFx) = F (x+ εFy, y − εFx).

Collect ε3 terms:

FxxxF
3
y − 3FxxyF

2
yFx + 3FxyyFyF

2
x − FyyyF

3
x ) = 0.

Around Birkhoff conjecture for Magnetic billiards – p. 5/38



This is a complete derivative along the field (Fy
∂
∂x

− Fx
∂
∂y

) of the affine Hessian

H(F ) := FxxF
2
y − 2FxyFxFy + FyyF

2
x .

So

H(F ) = const

Can be further studied by algebraic tools...(Tabachnikov, Glutsyuk-Shustin):

Theorem.

The only algebraically integrable outer billiards are ellipses.
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Angular billiard

Birkhoff billiard B turns out to be Dual to Angular billiard A.
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Figure.2 ∠AOT = ∠TOB, A(A) = B.

Let Γ the dual curve to γ consisting of points which are dual to the tangent lines of γ.

Theorem. In a neidhborhood of the boundary curve Γ the Angular billiard is Dual to Birkhoff billiard

inside γ. More precisely, if a line a is transformed to b by B, then the for the dual points one has:

A(A) = B.
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Duality

Correspondence of polar duality with respect to the unit circle: It acts on non-oriented lines. Given a

line l not passing through O we write l in the form < n, x >= p, p > 0, where n is an outward

unit normal to l then the dual point corresponding to l is by definition L = n/p. In other words, the

corresponding point L lies on the normal radius to the line at the distance equal 1/p:

l = {< n, x >= p, p > 0} ↔ L = n/p.

Polar duality extends to the usual projective duality:

l = {kx+ ly = mz} ↔ (k : l : m).

By small letters we denote the lines and by capital letters the corresponding dual points.
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Duality preserves the incidence relation and dual to Γ is γ again. More precisely, if l is tangent to γ

at Q then the dual line q is tangent to Γ at L (see Fig. 3).

Furthermore, if a, b are two oriented positive lines in the plane so that the Birkhoff billiard map B
transforms a to b. Let Q ∈ γ be the point of reflection and let l be the tangent line to γ at the

reflection point Q. Then the dual points A,B lie on the line q which is tangent to Γ at L. Moreover,

AOL and BOL are equal, so Angular billiard rule holds:

A(A) = B.
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Figure 3 Polar duality; β = α.
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Remarkable equation-Angular billiard

Lemma. For the integral F of Angular billiard for Γ, for all small ε, and (x, y) ∈ Γ we have:

F (x+ εFy, y − εFx)
(

−µ

ε

)2m

= F (x+ µFy, y − µFx),(1)

µ = − (x2 + y2)ε

x2 + y2 + 2ε(xFy − yFx)
.

More complicated but somehow similar to the equation for Outer billiards. Can be treated by

algebraic tools... Bialy-Mironov, Glutsyuk...Altogether one has the following

Theorem. (Algebraic Birkhoff conjecture)

Algebraic Birkhoff conjecture holds true: the existence of Polynomial in momenta integral for Birkhoff

billiard implies that the boundary curve is an ellipse.
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Magnetic billiards

Magnetic field of constant magnitude β > 0, the particle moves inside convex domain Ω with unit

speed along Larmor circle of constant radius r = 1

β
in a counterclockwise direction, hitting the

boundary the particle is reflected according to the law of geometric optics. We shall assume that

every smooth piece γ of the boundary of Ω satisfies

β < kmin ⇔ r > ρmax

where k is the curvature (weak Magnetic field). Motivation: Berry-Robnik experiments: Magnetic

billiard in ellipse is not integrable.

Beautiful picture by Peter Albers, Michael Hermann, Gautam Dilip Banhatti (with permission) of

Magnetic billiards.
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Example and Conjecture

Example. Let γ be a circle with the center at the origin. Then the function which measures the

distance to the origin of the center of Larmor circle remains unchanged under the reflections and

hence is the integral of the billiard flow. So the integral h has the form:

h(x, v) = x2
1 + x2

2 +
2

β
(v1x2 − v2x1).

Conjecture: The only integrable magnetic billiard is circular.

Here, as usual the integrability can be understood in various ways.

An approach of Hopf rigidity and Total integrability for magnetic billiards I reported here on 2013.

L : T1Ω → R
2, L(x, v) = x+ rJv,(2)

which assigns to every unit tangent vector v ∈ TxΩ the center of the corresponding Larmor circle.

Varying unit vector v in TxΩ, for a fixed point x ∈ Ω, the corresponding Larmor centers form a

circle of radius r centered at x, and the domain swept by all these circles, when x runs over Ω, we

shall denote by Ωr . Vice versa, one can prove that for any circle of radius r lying in Ωr its center

necessarily belongs to Ω.
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Picture
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Fig. 2. Circle of radius r centered at γ(s) is tangent to ∂Ωr = γ+r ∪ γ−r .
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Phase space Ωr. Cylinder vs Annulus
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Figure 2: Phase cylinder = γ × (0, π); Phase annulus= Ωr .
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Parallel curves

Moreover, for any smooth piece γ of the boundary ∂Ω we define two curves as follows. Fix an

arc-length parameter s of positive (counterclockwise) orientation, we set:

γ+r(s) = L(γ(s), τ(s)); γ−r(s) = L(γ(s),−τ(s)),(3)

where τ(s) = γ̇(s). It is easy to see that, Ωr ⊂ R
2 is a bounded domain in the plane

homeomorphic to the annulus and the curves γ±r , called parallel curves to γ, lie on the boundary

∂Ωr. Here γ−r lies on the outer boundary of the annulus, and γ+r lies on the inner boundary. The

curves γ±r are also called equidistant curves, or fronts, in Singularity theory, or offset curves in

Computer Aided Geometric Design.

Moreover, we introduce the mapping M : Ωr → Ωr by the following rule: Let C−, C+ are two

Larmor circles centered at P−, P+ respectively. We define

M(P−) = P+ ⇐⇒ C− is transformed to C+,

after billiard reflection at the boundary ∂Ω. The map M : Ωr → Ωr preserves the standard

symplectic form in the plane, and thus Ωr naturally becomes the phase space of magnetic billiard.

We shall call M Magnetic billiard map. On the boundaries γ±r , map M acts identically

Around Birkhoff conjecture for Magnetic billiards – p. 15/38



�

R
�

q qq p

qq P−P+

?

q

P

?

Ω

γ
+r

q

Q

Fig. 3 Arcs (q;Q) and (Q; p) belong to C− and C+.
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Fig. 4 Arcs (q;Q) and (Q; p) belong to C− and C+.
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Symplectic form

Theorem The map M preserves the standard symplectic form ω in the plane.

Proof. M maps P− to P+. Let s be the arc-length parameter along γ. Let (τ, n), where

τ = γ̇, n = Jτ , be the Frenet orthonormal frame along γ. Introduce the coordinates (s, ε) in Ωr

by

(s, ε) 7→ P = γ(s) + rJRετ(s).

Notice that the points P−, P+ correspond the opposite signs of the coordinate ε. Differentiating with

respect to s and ε we get

∂P

∂s
= τ(s) + krJRεn(s) = τ(s)− krRετ(s),

∂P

∂ε
= rJRεJτ(s) = −rRετ(s) = −r cos ε τ(s)− r sin ε n(s).

ω

(

∂P

∂s
,
∂P

∂ε

)

= ω (τ(s),−rRετ(s)) = −r sin ε.

ω = −r sin ε ds ∧ dε.

Notice that the sign change of ε leaves this expression invariant, proving the invariance of ω under

M. Notice, ω coincides with the familiar invariant 2-form for the ordinary Birkhoff billiard.
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A theorem

Given a polynomial integral Φ =
∑N

k+l=0
akl(x)v

k
1v

l
2 of the magnetic billiard we define:

F : Ωr → R, F ◦ L = Φ.(4)

This is a well defined construction since Φ is an integral of the magnetic flow so has constant values

on any Larmor circle. Moreover, since Φ is invariant under the billiard flow, it follows that F is

invariant under billiard map M:

F ◦M = F.

Since Φ is a polynomial in v, then function F satisfies the following property: F restricted to any

circle of radius r lying in Ωr is a trigonometric polynomial of degree at most N .

Theorem. Let Ωr be a domain in R
2 which is the union of all circles of radius r whose centers run

over a domain Ω (for example the whole R
2). Let F : Ωr → R be a continuous function on Ωr

such that F being restricted to any circle of radius r of Ωr is a trigonometric polynomial of degree at

most N. It then follows that F is a polynomial in (x, y) of degree at most 2N.
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Main result on magnetic billiard

Proposition. Suppose that the magnetic billiard in Ω admits a polynomial integral Φ and let F be

the corresponding polynomial on Ωr . Then for every smooth piece γ of the boundary ∂Ω it follows

that

F |γ±r
= const.

Corollary. The curves γ, γ±r are algebraic curves. Let f±r be a minimal defining polynomial of

γ±r . It may happen that both γ±r belong to the same component, so that f+r = f−r. For

instance, if γ is ellipse, then f−r = f+r is irreducible polynomial of degree 8.

Theorem. Let Ω be a convex bounded domain with a piece-wise smooth boundary, such that every

smooth piece of the boundary has curvature at least β. Suppose that the magnetic billiard in Ω

admits a Polynomial integral Φ. Then the following alternative holds: either ∂Ω is a circle, or every

smooth piece γ of the boundary ∂Ω is not circular and has the property that affine curves

{f±r = 0} are smooth in C
2. Moreover, any non-singular point of intersection of the projective

curve {f̃±r = 0} in CP 2 with the infinite line {z = 0} away from the isotropic points

(1 : ±i : 0) must be a tangency point with the infinite line. Here f̃±r is a homogenization of f±r .
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Corollaries

Corollary1. For any non-circular domain Ω in the plane, the magnetic billiard inside Ω is not

algebraically integrable for all but finitely many values of β.

Indeed, f±r is a polynomial in x, y and r. Every piece γ has positive curvature bounded from

below by β, then there is an open interval r ∈ (ρmin; ρmax) where singularities of the parallel

curve γ+r are visible. So the equations

∂xf+r = ∂yf+r = f+r = 0

define an algebraic set in C
3(x, y, r) and its projection on C(r) is a constructible set containing

the interval r ∈ (ρmin; ρmax). Thus this set is co-finite.

Corollary2. Let Ω be an interior of the standard ellipse:

γ =

{

x2

a2
+

y2

b2
= 1

}

, 0 < b < a.

Then for all 0 < β < kmin = b
a2 magnetic billiard in ellipse is not algebraically integrable.
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Parallel curves to ellipse

Parallel curves to ellipse are determined by:

a8(b4+(r2−y2)2−2b2(r2+y2))+b4(r2−x2)2(b4−2b2(r2−x2+y2)+(x2+y2−r2)2)

−2a6(b6 + (r2 − y2)2(r2 + x2 − y2)− b4(r2 − 2x2 + 3y2)− b2(r4 + 3y2(x2 − y2)+

r2(3x2+2y2)))+2a2b2(−b6(r2+x2)− (−r2 +x2+y2)2(r4 −x2y2− r2(x2+y2))+

b4(r4−3x4+3x2y2+r2(2x2+3y2))+b2(r6−2x6+x4y2−3x2y4+r4(−4x2+2y2)+

r2(5x4−3x2y2−3y4)))+a4(b8+2b6(r2+3x2−2y2)+(r2−y2)2(−r2+x2+y2)2−

2b4(3r4 − 3x4 + 5x2y2 − 3y4 + 4r2(x2 + y2)) + 2b2(r6 − 3x4y2 + x2y4 − 2y6+

2r4(x2 − 2y2) + r2(−3x4 − 3x2y2 + 5y4))) = 0.

It turns out to be irreducible. Moreover the parallel curves γ±r have singularities in the Complex

plane for every r > 1

kmin
= a2

b
> b as follows:

(0,±
√
b2 − a2

√
a2 − r2

a
), (±

√
a2 − b2

√
b2 − r2

b
, 0).

Therefore the result follows from the main Theorem.
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Remarkable equation

F (P (−(ε)) = F (P (+(ε))(5)

F

(

x+ r
Fx(1− cos ε) + Fy sin ε

|∇F | ; y + r
Fy(1− cos ε)− Fx sin ε

|∇F |

)

−(6)

F

(

x+ r
Fx(1− cos ε)− Fy sin ε

|∇F | ; y + r
Fy(1− cos ε) + Fx sin ε

|∇F |

)

= 0.

The next step is to expand equation (6) in power series in ε. The coefficient at ε3 reads:

(FxxxF
3
y − 3FxxyF

2
yFx + 3FxyyFyF

2
x − FyyyF

3
x )+(7)

3β(F 2
x + F 2

y )
1
2 (FxxFxFy + Fxy(F

2
y − F 2

x )− FyyFxFy) = 0, (x, y) ∈ γ±r.

Remarkably, the left-hand side of (7) is a complete derivative along the tangent vector field v to γ±r ,

v = (Fy,−Fx), of the following expression which therefore must be constant:

H(F ) + β|∇F |3 = const, (x, y) ∈ γ±r, where(8)

H(F ) := FxxF
2
y − 2FxyFxFy + FyyF

2
x .
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Notice (8) is valid only for those points, where ∇F does not vanish. If the polynomial F is not a

minimal polynomial defining γ+r this can be false. So denote by f+r irreducible defining polynomial

of γ+r , the proof for the curve γ−r is completely the same. Then we have:

F = fk
+r · g,

for some integer k ≥ 1, and polynomial g not vanishing on γ+r identically. Given an arc of γ+r

where g does not vanish we may assume it is positive on the arc (otherwise we change the sign of

F ). Moreover, since f+r is irreducible polynomial, then we may assume that ∇f+r does not

vanish on the arc. Therefore the equation (8) holds for F
1
k = f+r · g

1
k . Thus we have

H(f+r · g
1
k ) + β|∇(f+r · g

1
k )|3 = const, (x, y) ∈ {f+r = 0}.(9)

Using the identities which are valid for all (x, y) ∈ {f+r = 0}

H(f+r · g
1
k ) = g

3
k H(f+r), ∇(f+r · g

1
k ) = g

1
k ∇(f+r),

we obtain from (9):

g
3
k (H(f+r) + β|∇f+r|3) = const, (x, y) ∈ γ+r.(10)
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Raising to the power k back we get:

g3(H(f+r) + β|∇f+r|3)k = const, (x, y) ∈ γ+r.(11)

Proposition. The constant in equation (11) cannot be 0.

Proof. Recall important formulas for the curvature k of the curve defined implicitly by {f+r = 0}:

div

(

∇f+r

|∇f+r|

)

=
H(f+r)

|∇f+r|3
= ±k+r.(12)

Now we take any point on γ+r and substitute into (11). This gives that the constant must be

non-zero. Indeed, if the const is zero, then

H(f+r)

|∇f+r|3
= −β.

Then by (12) we have k+r = ±β. But

ρ+r = r − ρ ⇒ k+r =
k(γ)

r · k(γ)− 1
⇒ k+r >

1

r
= β.
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End of proof

Consider now the equation (11) in C2. It follows from (11) and Proposition 26 that the curve

{f+r = 0} has no singular points in C
2, since at singular points both H(f+r) and ∇(f+r)

vanish. Moreover, consider now in CP 2 with homogeneous coordinates (x : y : z) the projective

curve {f̃+r = 0}. We shall denote homogeneous polynomials corresponding to f, g by f̃ , g̃

respectively. Then the homogeneous version of (11) for (x : y : z) ∈ {f̃+r = 0} reads:

g̃3
(

z ·H(f̃+r) + β((f̃+r)
2
x + (f̃+r)

2
y)

3
2

)k

= const · zp.(13)

Here the power p = 3deg g + 3k(deg f+r − 1) must be positive unless the degree of the

polynomial f+r and of F is one. But this is impossible, due to our convexity assumptions. Let Z be

any point of intersection of {f̃+r = 0} with infinite line {z = 0}. Then by (13) for such a point we

have two relations

(f̃+r)
2
x + (f̃+r)

2
y = 0, x(f̃+r)x + y(f̃+r)y + z(f̃+r)z = x(f̃+r)x + y(f̃+r)y = 0.

But these two relations are compatible only in the two cases: either

x2 + y2 = z = 0, or (f̃+r)x = (f̃+r)y = 0.

This completes the proof.
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Outer magnetic billiard

Billiard map M coincides with, what we call Outer magnetic billiard. In addition, the result which we

get by our method provides the extension of Theorem by Tabachnikov to the case of Outer magnetic

billiards. Notice that there are two different cases:

1) In this case the orientation on Γ is clockwise then T is well defined for any β > 0.

-

Γ(s)

Γ

q

q

P

T (P )

q

?
τ

-Jτ

Γ
+2r

(s)

�

q

O
q

Fig. 6 Outer billiard map P → T (P ) for clockwise orientation on Γ.
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Outer magnetic billiards

2) However, if the orientation on Γ is counterclockwise then T is well defined for 0 < β < kmin.

Γ

Γ(s)
q�τ

?Jτ
q
P

q
T (P )

q

Γ
+2r

(s)

?

?

q

O
q

O

Fig. 7 Outer billiard map P → T (P ) for counterclockwise orientation on Γ.

In both cases 1) and 2) the domain where the Outer billiard map T is defined is the annulus A

bounded by Γ and Γ+2r . The map T : A → A is a symplectic, we call T – Outer magnetic billiard.

Next theorem shows in case 2) T and M are the same:
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Inner and Outer magnetic billiards

Theorem. Magnetic billiard map M : Ωr → Ωr coincides with Outer billiard T determined by the

inner boundary γ+r of Ωr, endowed with a counterclockwise orientation.
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Fig. 8 Arcs (q;Q) and (Q; p) belong to C− and C+.
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Fig. 9 Arcs (q;Q) and (Q; p) belong to C− and C+.

Remark. Notice that the outer billiard map T in the case 1) (see Figure 3) is not isomorphic to

Magnetic Birkhoff billiard globally, by topological reasons. Indeed the difference between rotation

numbers of two boundaries Γ,Γ+2r equals 0 for case 1) and equals 2π in case 2). Nevertheless,

since our method below is concentrated near the boundaries it applies for both cases 1) and 2).
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Theorem for Outer magnetic billiards

Theorem. Assume that there exists a non-constant Polynomial F such that F is invariant under

Outer billiard map T . Let f, f+2r are irreducible defining polynomials of Γ,Γ+2r. Then the

following alternative holds. Either Γ is a circle, or the curves {f = 0}, {f+2r = 0} in C
2 are

smooth with the property that any non-singular intersection point of the projective curves

{f̃ = 0}, {f̃+2r = 0} in CP 2 (here f̃ is a homogenization of f ) with the infinite line {z = 0}
which is not an isotropic point (1 : ±i : 0), must be a point of tangency.

Corollary 1 The outer magnetic billiard for ellipse is not algebraically integrable.

Proof. For the case of ellipse the curve {f̃ = 0} is smooth everywhere in CP 2 and intersects

transversally the infinite line in two points away from the isotropic points.

Corollary 2 For all but finitely many values of the magnitude of magnetic field β, the Outer magnetic

billiard of Γ is not algebraically integrable unless Γ is a circle.
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Proof of the lemma

Lemma. Let F be a C∞ function F : A → R where

A = {(x, y) : (r − δ)2 ≤ x2 + y2 ≤ (r + δ)2},

is the annulus in R
2. Suppose that the function F being restricted to any circle of radius r lying in A

is a trigonometric polynomial of degree at most N. It then follows that F is a polynomial in x and y

of degree at most 2N.

Proof. (based on an idea of S. Tabachnikov). We shall say that F has property PN if the restriction

of F to any circle of radius r lying in A is a trigonometric polynomial of degree at most N . The

proof of Lemma goes by induction on the degree N .

1) For N = 0, Lemma obviously holds since if F has property P0 then F is a constant on any

circle of radius r and hence must be a constant on the whole A, because any two points of A can

be connected by a union of finite number circular arcs of radius r.

2) Assume now that any function satisfying property PN−1 is a polynomial of degree at most

2(N − 1).

Let F be any smooth function on A of property PN . Denote by C0 be the core circle of A, i.e.

C0 = {x2 + y2 = r2}, and let F0 be the polynomial in (x, y) of degree N satisfying

F |C0
= F0|C0

.
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Then, one can find a C∞ function G : A → R so that

F (x, y)− F0(x, y) = (x2 + y2 − r2)G(x, y), ∀(x, y) ∈ A.(14)

Let us show now that G has property PN−1. Then by induction we will have that G is a polynomial

of degree 2(N − 1) and thus by (14), F is a polynomial of degree 2N at most. We need to show

that the function g := G|C is a trigonometric polynomial of degree (N − 1) or less, for any circle

C of radius r in A . With no loss of generality we may assume that the circle C is centered on the

x−axes (otherwise apply suitable rotation of the plane). Then

C = {(x, y) ∈ A : (x− a)2 + y2 = r2}, |a| < δ.

Substituting x = a+ r cos t, y = r sin t into (14) we have

(F − F0)|C = (a2 + 2ar cos t) · g.
+∞
∑

−∞

fke
ikt = a(a+ reit + re−it)

+∞
∑

−∞

gke
ikt,

where fk are Fourier coefficients of (F − F0)|C .
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Moreover, we have:

fk = 0, |k| > N,

since both F, F0 have property PN . And hence:

rgk+1 + agk + rgk−1 = 0, |k| > N.

The characteristic polynomial of this difference equation

λ2 +
a

r
λ+ 1 = 0

has two complex conjugate roots λ1,2 = e±iα and therefore we get the formula:

gN+l = c1e
ilα + c2e

−ilα, l ≥ 2, where

c1 + c2 = gN , c1e
iα + c2e

−iα = gN+1.

It is obvious now that if at least one of the coefficients gN or gN+1 does not vanish, then the

sequence {gN+l} does not converge to 0 when l → +∞. This contradicts the continuity of g.

Therefore both gN , gN+1 must vanish and so g is a trigonometric polynomial of degree at most

(N − 1), proving that G has property PN−1. This completes the proof.
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Proof of the Theorem.

Next we give the proof of the Theorem.

Proof. Take any circle of radius r lying in Ωr and let A be the annulus which is the closure of its

δ−neighborhood. Using the convolution with a C∞ mollifier ρε compactly supported in a small disc

of radius ε, we get a C∞ function Fε :

Fε(z) :=

∫

ρε(z − ξ)F (ξ)dξ =

∫

F (z − ξ)ρε(ξ)dξ, z = (x, y).

It is easy to see, that if F has property PN then also Fε has property PN on the chosen annulus A

for all ε small enough, 0 < ε < ε0. Then by Lemma, Fε must be a polynomial on A of degree at

most 2N , for 0 < ε < ε0. Recall, that Fε converge to F uniformly on A as ε → 0. Therefore,

since the space of Polynomials of degree at most 2N is finite-dimensional it then follows that F is

also a polynomial on A of degree at most 2N . The set Ωr can be covered by annuli like A,

therefore F must be a polynomial of degree at most 2N on the whole Ωr. This completes the of

Theorem.
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Questions

1. Notice our results hold for a fixed β. For all but finitely many β we have algebraic non-integrability.

However there is still a hope for new integrable magnetic billiard, for some β. The reason for the

optimism comes from recently discovered new integrable magnetic geodesic flows on the 2-torus:

we proved that one can find a Riemannian metric on T2 and exact magnetic field β such that the

magnetic flow has an additional quadratic integral on one energy level.

2. Question on magnetic flows which are integrable for all energy levels also seems to be not simple.

Given a Riemannian metric on the 2-torus, and an exact magnetic field. Suppose there exists a

polynomial in momenta integral of the magnetic flow of all energy levels. Does this imply that the

system has an S1 symmetry?

3. Other magnetic toys:

Andreev billiard;
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THANKS!

AND WELCOME TO THE PLAYGROUND!
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