CYCLICALLY PRESENTED SIERADSKI GROUPS WITH EVEN NUMBER OF GENERATORS AND 3-MANIFOLDS

T. Kozlovskaya

Tomsk State University Regional Scientific and Educational Mathematical Center

25 June 2019

- closed orientable 3-manifolds
- study the problem if a given presentation of group is geometric

 $-\ \mbox{construct}$ manifolds which are n-fold cyclic branched coverings of lens spaces

Spherical and hyperbolic dodecahedral spaces

The spherical $\left(\frac{2\pi}{3}\right)$ and hyperbolic $\left(\frac{2\pi}{5}\right)$ dodecahedra.

Seifert H., Weber C (1933) the 3 – manifolds (spherical and hyperbolic) by a pairwise identification of faces of the regular dodecahedra.

Topological property of dodecahedral hyperbolic space

The Seifert–Weber dodecahedral spherical manifold is the 3 – fold cyclic branched covering of the 3 – sphere branched over the trefoil knot

The Seifert–Weber dodecahedral hyperbolic manifold is the 5 – fold cyclic branched covering of the 3 – sphere branched over the Whitehead link

Let \mathbb{F} be the free group of rank $m \ge 1$ with generators x_1, x_2, \ldots, x_m and let $w = w(x_1, x_2, \ldots, x_m)$ be a cyclically reduced word in \mathbb{F}_m . Let $\eta : \mathbb{F}_m \to F_m$ be an automorphism given by $\eta(x_i) = x_{i+1}$, $i = 1, \ldots, m-1$, and $\eta(x_m) = x_1$. The presentation

$$G_m(w) = \langle x_1,\ldots,x_m \mid w=1, \eta(w)=1,\ldots,\eta^{m-1}(w)=1 \rangle,$$

is called an *m*-cyclic presentation with defining word *w*. A group *G* is said to be cyclically presented group if *G* is isomorphic $G_m(w)$ for some *m* and *w*.

Sieradski groups

Cyclically presented groups

$$S(m) = \langle x_1, x_2, \ldots, x_m \mid x_i x_{i+2} = x_{i+1}, \quad i = 1, \ldots m \rangle,$$

where all subscripts are taken by mod m, were called the Sieradski groups. The groups

$$S(m, p, q) = \langle x_1, \dots, x_m |$$

 $x_i x_{i+q} \cdots x_{i+(q-1)dq-q} x_{i+(q-1)dq} = x_{i+1} x_{i+q+1} \cdots x_{i+(q-1)dq-q+1},$
 $i = 1, \dots, m \rangle,$

are called the generalised Sieradski groups. All subscripts are taken by mod *m*. Parameters *p* and *q* are co-prime integers such that p = 1 + dq, $d \in \mathbb{Z}$.

The Sieradski manifolds are the *n*-fold cyclic coverings of S^3 branched over the trefoil knot.

Cavicchioli A., Hegenbarth F. and Kim A.C. (1999): The cyclic presentation S(m, p, q) corresponds to a spine of the *m*-fold cyclic covering of the 3-sphere S^3 branched over the torus knot T(p, q).

Cyclic presentations of S(2n, 3, 2) with *n* generators

$$\begin{aligned} S(2n,3,2) &= G_{2n}(x_1x_3x_2^{-1}) \\ &= \langle x_1, x_2, \dots, x_{2n} | x_ix_{i+2} = x_{i+1}, \quad i = 1, \dots, 2n \rangle \\ &= \langle x_1, x_2, \dots, x_{2n} | x_{2j}x_{2j+2} = x_{2j+1}, \quad x_{2j+1}x_{2j+3} = x_{2j+2} \rangle \\ &= \langle x_2, x_4, \dots, x_{2n} | (x_{2j}x_{2j+2})(x_{2j+2}x_{2j+4}) = x_{2j+2} \rangle \\ &= \langle y_1, y_2, \dots, y_n | y_j y_{j+1}^2 y_{j+2} = y_{j+1}, \quad j = 1, \dots, n \rangle \\ &= G_n(y_1y_2^2y_3y_2^{-1}). \end{aligned}$$

S(2n,3,2) is the fundamental group of the 3-manifold $\mathcal{B}(2n,3,2)$, which is the 2*n*-fold cyclic covering of S^3 branched over the trefoil knot.

It is natural to ask: if the cyclic presentation $G_n(x_1x_2^2x_3x_2^{-1})$ is geometric too?

J. Howie, G. Williams, Fibonacci type presentations and 3-manifolds, Topology Appl. 215 (2017), 24–34.

Theorem (J. Howie, G. Williams)

Cyclic presentation $G_n(x_0x_1^2x_2x_1^{-1})$ is geometric.

Heegaard diagram

Let $M = H \cup H'$ is a genus g Heegaard splitting of a manifold $M, u = u_1, \ldots, u_g$ and $v = v_1, \ldots, v_g$ are meridian systems for H and H' and $F = \partial H = \partial H'$ is a Heegaard surface. Let $\varphi : F \to F$ be homeomorphism of their boundaries. Then the triple $(F, \varphi(u), v)$ is called a Heegaard diagram of M.

Heegaard diagram of the manifold $\mathcal{S}(2n, 3, 2)$

Simplifying a Heegaard diagram of $S(2n, 3, 2)/\rho$.

Lens space

Let $p \ge 3$, 0 < q < p and (p, q) = 1. Consider a *p*-gonal bipyramid, i.e. the union of two cones over a regular *p*-gon, where the vertices of the *p*-gon are denoted by $A_0, A_1, \ldots, A_{p-1}$ and apex of cones are denoted by S_+ and S_- . For each *i* we glue the face $A_i S_+ A_{i+1}$ with the face $A_{i+q}S_-A_{i+q+1}$. The manifold obtained is the lens space $L_{p,q}$

(n-1)

Cyclic presentations of S(2n, 5, 2) with *n* generators

If the cyclic presentation $G_n(x_0x_1x_2x_2x_3x_4x_3^{-1}x_2^{-1}x_1x_2x_3x_2^{-1}x_1^{-1})$ is geometric ?

$$x_0x_1x_2x_2x_3x_0x_3^{-1}x_2^{-1}x_1x_2x_3x_2^{-1}x_1^{-1} = 1$$

Heegaard diagram for the case n = 4, (p, q) = (5, 2)

Theorem (K.- Vesnin A.)

The cyclic presentation $G_n(x_0x_1x_2x_2x_3x_4x_3^{-1}x_2^{-1}x_1x_2x_3x_2^{-1}x_1^{-1})$ is geometric, *i. e. it corresponds to a spine of a closed 3-manifold*.

For each *n* the manifold from theorem is an *n*-fold cyclic covering of L(5, 1).

Three-manifold Recognizer: S(8, 5, 2) is the Seifert manifold $(S^2, (4, 1), (5, 2), (5, 2), (1, -1))$.

The complex for the case n = 4, (p, q) = (5, 2)

$$x_0x_1x_2x_2x_3x_0x_3^{-1}x_2^{-1}x_1x_2x_3x_2^{-1}x_1^{-1} = 1,$$

The complex for the case n = 1, (p, q) = (7, 2)

 $\begin{array}{l} x_{0}x_{1}x_{0}x_{1}x_{1}x_{0}x_{1}x_{0}x_{1}^{-1}x_{0}^{-1}x_{1}^{-1}x_{0}x_{1}x_{0}x_{1}x_{0}x_{1}x_{0}^{-1}x_{1}^{-1}x_{0}^{-1}x_{1}x_{0}x_{1}x_{0}x_{1}^{-1}x_{0}^{-1}x_{1}^{-1}x_{0}^{-1}x_{1}^{-1}x_{0}x_{1}x_{0}x_{1}x_{0}x_{1}^{-1}x_{0}^{-1}x_{1}^{-1}x_{0$

The complex for the case n = 4, (p, q) = (7, 2)

 $\begin{aligned} & x_0 x_1 x_2 x_3 x_3 x_0 x_1 x_2 x_1^{-1} x_0^{-1} x_3^{-1} x_2 x_3 x_0 x_1 x_0^{-1} x_3^{-1} x_2^{-1} x_1 x_2 x_3 x_0 x_3^{-1} x_2^{-1} x_1^{-1} = 1 \\ & x_1 x_2 x_3 x_0 x_0 x_1 x_2 x_3 x_2^{-1} x_1^{-1} x_0^{-1} x_3 x_0 x_1 x_2 x_1^{-1} x_0^{-1} x_3^{-1} x_2 x_3 x_0 x_1 x_0^{-1} x_3^{-1} x_2^{-1} = 1 \\ & x_2 x_3 x_0 x_1 x_1 x_2 x_3 x_0 x_3^{-1} x_2^{-1} x_1^{-1} x_0 x_1 x_2 x_3 x_2^{-1} x_1^{-1} x_0^{-1} x_3 x_0 x_1 x_2 x_1^{-1} x_0^{-1} x_3^{-1} = 1 \\ & x_3 x_0 x_1 x_2 x_2 x_3 x_0 x_1 x_0^{-1} x_3^{-1} x_2^{-1} x_1 x_2 x_3 x_0 x_3^{-1} x_2^{-1} x_1^{-1} x_0 x_1 x_2 x_3 x_2^{-1} x_1^{-1} x_0 x_1 x_2 x_3 x_2^{-1} x_1^{-1} x_0^{-1} = 1 \end{aligned}$

Heegaard diagram for the case n = 4, (p, q) = (7, 2)

The generalised Sieradski group S(2n, 7, 2)

Theorem

For $n \ge 1$ group S(2n, 7, 2) has a presentation with n generators $y_0, y_1, \ldots, y_{n-1}$ and defining relations $\{y_i y_{i+1} y_{i+2} y_{i+3} y_{i+3} y_{i+4} y_{i+5} y_i y_{i+5} - 1 y_{i+4}^{-1} y_{i+3}^{-1} y_{i+2} y_{i+3} y_{i+4} y_{i+5} y_{i+4} y_{i+3}^{-1} y_{i+2}^{-1} y_{i+4} y_{i+3}^{-1} y_{i+2}^{-1} y_{i+1} = 1$ $i = 0, \ldots, n - 1.\}$ These presentation is geometric and corrisponds to n-fold cyclic branched covering of the lens space L(7, 1).

Three-manifold Recognizer:

S(2,7,2) is the Seifert manifold $(S^2, (2,1), (7,2), (7,2), (1,-1))$ S(6,7,2) is the Seifert manifold $(S^2, (6,1), (7,3), (7,3), (1,-1))$.

THANK YOU