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Knots

A knot K is an embedding of a circle S1 into the 3-sphere S3.
Two knots K

1

and K
2

are said to be equivalent if K
1

can be
transformed into K

2

via an ambient isotopy.

A knot is called tame if it is equivalent to a polygonal knot (or a
smooth knot).

We consider only tame and oriented knots.

A Basic Problem

Given two knots K
1

and K
2

, are they equivalent?
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Knot invariants

A knot invariant is a function that assigns a quantity or a
mathematical expression to each knot which is preserved under the
knot equivalence.

Examples of knot invariants:

Unknotting Number = The minimal number of crossing switches
needed to unknot a knot.
Knot group G(K) := ⇡

1

(S3 \ K).
3-Coloring.
Alexander polynomial.
Jones polynomial.
Kau↵man polynomial.
Quandle homology.

...

None of the above is a complete invariant.

However, G (K ) ⇠= Z if and only if K is a trivial knot
[Papakyriakopoulos, 1957].
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Knot invariant: 3-Coloring

An elementary knot invariant is the number of 3-colorings.

A 3-coloring of a knot diagram D(K ) is an assignment to each arc
one of the three colors (say, red, blue, green) such that any three
incident arcs are either all the same color or all di↵erent colors.

Here is a non-trivial 3-coloring of the trefoil knot.

Theorem

Any two knot diagrams related by Reidemeister moves have the same
number of 3-colourings.

The total number of 3-colorings is a knot invariant, denoted
Col

3

(K ).
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Quandles/Distributive groupoids

A quandle is a set X with a binary operation (a, b) 7! a ⇤ b
satisfying the following conditions:

1

x ⇤ x = x for all x 2 X ;
2 For any x , y 2 X , there is a unique z 2 X such that x = z ⇤ y ;
3 (x ⇤ y) ⇤ z = (x ⇤ z) ⇤ (y ⇤ z) for all x , y , z 2 X .

Introduced independently by Matveev and Joyce in 1982.

Equivalently, for each element x 2 X , the map S
x

: X ! X given by

S
x

(y) = y ⇤ x

is an automorphism of X fixing x , referred as inner automorphism.

S
x

being a bijection is equivalent to existence of another binary
operation on X , (x , y) 7! x ⇤�1 y , satisfying

x ⇤ y = z if and only if x = z ⇤�1 y

for all x , y , z 2 X .
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Quandle axioms vs Reidemeister moves

Quandle axioms are derived from the Reidemeister moves on
oriented knot diagrams.

For each crossing of a knot diagram, we set

The three quandle axioms are equivalent to the three Reidemeister
moves of knot diagrams.
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Examples of quandles

Many interesting examples of quandles come from groups.
1 If G is a group, then the set G with the binary operation

a ⇤ b = b

�1

ab

gives a quandle structure on G , called conjugation quandle, and
denoted by Conj(G).

2 Let G be a group and ' 2 Aut(G). Then the set G with binary
operation

a ⇤ b = '(ab�1)b

gives a quandle structure on G , referred as generalized Alexander
quandle, and denoted by Alex(G ,').
If G is additive abelian and ' = �id

G

, then a ⇤ b = 2b � a, and the
quandle is called Takasaki quandle.
In addition, if G = Z/nZ, then it is called dihedral quandle, and
denoted by R

n

.
3 A Riemannian manifold M is called a symmetric space if for each

x 2 M there exists a globally defined symmetry S

x

: M ! M. Every
symmetric space is a quandle with the binary operation given by
y ⇤ x = S

x

(y).
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Groups vs Quandles: Adjoint functors

If X is a quandle, then its enveloping group Env(X ) is defined by
generators as elements of X and relations given by

x ⇤ y = y�1xy

for x , y 2 X .

Env is a functor from the category of quandles to that of groups.

Further, Conj is also a functor from the category of group to that of
quandles.

Proposition [Matveev/Joyce, 1982]

The functor Env is the left adjoint to the functor Conj. Namely, for a
quandle X and a group G , there is a natural bijection

Hom
Groups

(Env(X ),G ) ⇠= Hom
Quandles

(X ,Conj(G )).
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Knot quandle

As expected, knots give rise to quandles.

If K is a knot, then the knot quandle is defined as

Q(K ) := hArcs in D(K ) | Ri,

where the set of relations R consists of expressions a ⇤ b = c
whenever the arc b passes over the double point separating arcs a
and c .

Theorem [Matveev/Joyce, 1982]

Let K
1

and K
2

be two knots. Then K
1

is equivalent to K
2

(up to
orientation) if and only if Q(K

1

) ⇠= Q(K
2

).

Unfortunately, it is very hard to work with freely presented quandles.
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Fox’s n-coloring of knots

3-coloring of knots (links) was generalized by Fox.

An n-coloring of a knot (link) diagram D(K ) is an assignment to
each arc one of the numbers {0, 1, . . . , n � 1} (called colors) such
that at each crossing the sum of the colors of the undercrossings is
equal to twice the color of the overcrossing modulo n.

Theorem [Fox, 1962]

Reidemeister moves preserve the number of n-colorings.

Hence the number of n-colorings Col
n

(K ) is a knot invariant.

Viewing the set {0, 1, . . . , n � 1} as the Dihedral quandle R
n

, the
number Col

n

(K ) is simply the number of quandle homomorphisms
from the knot quandle Q(K ) to R

n

.
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Quandle coloring of knots

Fox’s idea can be extended to arbitrary quandles.

Given a knot K and a quandle X , a quandle coloring of K by X is a
quandle homomorphism from Q(K ) to X .

Theorem

Given a quandle X , the number of quandle colorings |Hom(Q(K ),X )| is
a knot invariant.

The dihedral quandle R
3

corresponds to Col
3

(K ).

In general, R
n

corresponds to Fox’s n-coloring Col
n

(K ).

Mahender Singh IISER Mohali



Quandle actions

An action of a quandle Q on a quandle X is a quandle
homomorphism

� : Q ! Conj
�

Aut(X )
�

,

where Aut(X ) is the group of all quandle automorphisms of X , and
Conj

�

Aut(X )
�

its conjugation quandle.

Action is trivial if Im(�) = {id
X

}.
Notice that, any set X can be viewed as a trivial quandle. In that
case, Aut(X ) = ⌃

X

, the group of all bijections of the set X , and we
obtain the definition of an action of a quandle Q on a set X .
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Examples of quandle actions

If Q is a quandle, then the map � : Q ! Conj
�

Aut(Q)
�

given by
q 7! S

q

is a quandle homomorphism. Thus, every quandle acts on
itself by inner automorphisms.

Let G be a group acting on a set X . That is, there is a group
homomorphism � : G ! ⌃

X

. Viewing both G and ⌃
X

as
conjugation quandles and observing that a group homomorphim is
also a quandle homomorphism, it follows that the quandle Conj(G )
acts on the set X .
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Derivations of quandles

Let Q and X be two quandles and � : Q ! Conj
�

Aut(X )
�

a
quandle action of Q on X . A map f : Q ! X satisfying

f (q
1

⇤ q
2

) = f (q
1

) ⇤ f (q
2

)�(q1)

for all q
1

, q
2

2 Q, is called a derivation with respect to the quandle
action � of Q on X .
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Derivations of quandles: Observations

Der�(Q,X ) := {f : Q ! X | f is a derivation with respect to �}.
If the action � is trivial, then Der�(Q,X ) = Hom(Q,X ), the set of
all quandle homomorphisms from Q to X .

Given a non-trivial action � of a quandle Q on a non-trivial quandle
X , it is possible that the set Der�(Q,X ) is empty.

However, we can always find non-trivial actions of Q on X for which
this set is non-empty. Let id

X

6= S
x

2 Inn(X ) and
� : Q ! Conj

�

Aut(X )
�

given by

�(q) = S
x

for q 2 Q. Then f : Q ! X defined as

f (q) = x

for q 2 Q, is clearly an element of Der�(Q,X ).
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Abelian quandles

A quandle X is said to be abelian/medial if

(x ⇤ y) ⇤ (z ⇤ w) = (x ⇤ z) ⇤ (y ⇤ w)

for all x , y , z ,w 2 X .

For example, if A is an additive abelian group, then the Takasaki
quandle T (A) is abelian.

A quandle X is said to be commutative if

x ⇤ y = y ⇤ x

for all x , y 2 X .

Unlike groups, being commutative and being abelian do not mean
the same for quandles. In fact, any trivial quandle with more than
one element is abelian but not commutative. The dihedral quandle
R
3

on three elements is both abelian and commutative.
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Derivation quandles

Theorem [NSS, 2018]

Let Q and A be quandles such that A is abelian and
� : Q ! Conj(Aut(A)) a quandle action. If the set Der�(Q,A) is
non-empty, then it has the structure of an abelian quandle with respect
to the binary operation

(f ⇤ g)(q) = f (q) ⇤ g(q)

for f , g 2 Der�(Q,A) and q 2 Q.
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Compatible quandle actions

Let Q
1

,Q
2

be two quandles and A
1

,A
2

two abelian quandles. Let

�
1

: Q
1

! Conj
�

Aut(A
1

)
�

and
�
2

: Q
2

! Conj
�

Aut(A
2

)
�

be given actions.

A pair of quandle homomorphisms � : Q
2

! Q
1

and ⌧ : A
1

! A
2

is
said to be action compatible if the following diagram commutes

A
2

⇥Q
2

e�
2����! A

2

⌧

x

?

?

?

?

y

�

x

?

?

⌧

A
1

⇥Q
1

e�
1����! A

1

.
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Isomorphism of derivation quandles

Theorem-I [NSS, 2018]

Let Q
1

,Q
2

be two quandles and A
1

,A
2

two abelian quandles. Let
�
1

: Q
1

! Conj
�

Aut(A
1

)
�

and �
2

: Q
2

! Conj
�

Aut(A
2

)
�

be actions of
Q

1

,Q
2

on A
1

,A
2

, respectively. Let � : Q
2

! Q
1

and ⌧ : A
1

! A
2

be
action compatible quandle homomorphisms. Then there exists a quandle
homomorphism

� : Der�
1

(Q
1

,A
1

) ! Der�
2

(Q
2

,A
2

).

Further, if � and ⌧ are both isomorphisms, then so is �.
Additionally, if Q

1

,Q
2

are finitely generated and A
1

,A
2

are finite, then

|Der�
1

(Q
1

,A
1

)| = |Der�
2

(Q
2

,A
2

)|.
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Derivation quandle is a knot invariant

Theorem [NSS, 2018]

Derivation quandles of a tame knot with respect to an abelian quandle
are knot invariants.

Proof: Let K
1

and K
2

be two equivalent tame knots with knot quandles
Q(K

1

) and Q(K
2

), respectively. Then, by Joyce/Matveev, there is an
isomorphism � : Q(K

2

) ! Q(K
1

). Let A be an abelian quandle and
�
1

: Q(K
1

) ! Conj
�

Aut(A)
�

an action of Q(K
1

) on A. Then
�
2

:= �
1

� � is an action of Q(K
2

) on A. By Theorem-I, we obtain an
isomorphism Der�

1

�

Q(K
1

),A
� ⇠= Der�

2

�

Q(K
2

),A
�

. Thus, derivation
quandles are knot invariants.
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Total derivation quandle

Given two quandles (X
1

, ⇤
1

) and (X
2

, ⇤
2

), the disjoint union X
1

t X
2

can be turned into a quandle by defining

x ⇤ y =

8

>

>

>

<

>

>

>

:

x ⇤
1

y if x , y 2 X
1

x ⇤
2

y if x , y 2 X
2

x if x 2 X
1

, y 2 X
2

x if x 2 X
2

, y 2 X
1

.

(1)

If X
1

and X
2

are abelian, then X
1

t X
2

is not abelian in general.

Let K be a tame knot and A an abelian quandle. Taking
X
1

= Hom
�

Q(K ),A
�

and

X
2

=
G

� non-trivial action

Der�
�

Q(K ),A
�

,

we get a non-abelian quandle

D
�

Q(K ),A
�

:= X
1

t X
2

,

called the total derivation quandle.
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Total derivation quandle is a knot invariant

Theorem

The total derivation quandle with respect to an abelian quandle is an
invariant of tame knots, and contains the hom quandle as an abelian
subquandle.
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Total derivation quandle vs hom quandle

The knots

Figure : Figure Eight Knot 4
1

and

Figure : Knot 5
2

have isomorphic hom quandles, but total derivation quandles are
non-isomorphic, in fact, of di↵erent sizes.
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Polynomial knot invariant using derivations

Let Q be a quandle and X a finite quandle (not necessarily abelian).
The derivation polynomial of Q with respect to X is defined as

D
X

(Q)(u) = |Hom
�

Q,X
�

| +
X

� non-trivial action

u|Der�(Q,X )|+1.

Theorem [NSS, 2018]

The derivation polynomial of a tame knot with respect to a finite quandle
is a knot invariant.

Let K be a tame knot, X a finite quandle and D
X

(K )(u) the
derivation polynomial. Then D

X

(K )(0) = |Hom
�

Q(K ),X
�

|, the
quandle coloring invariant.
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Derivation polynomial:: Observations

We can extract some information from the derivation polynomial of
a tame knot with respect to a finite quandle.

Let K be a tame knot with the derivation polynomial
D

X

(K )(u) = a
0

+ a
1

u + · · ·+ a
n

un with respect to a finite quandle
X .

Then the constant term a
0

is the quandle coloring invariant, which
corresponds to the trivial action of Q(K ) on X .

For each k � 1, the coe�cient a
k

counts the number of non-trivial
quandle actions � of Q(K ) on X for which
|Der�

�

Q(K ),X
�

| = k � 1.

Mahender Singh IISER Mohali



Derivation polynomial vs quandle coloring invariant

Proposition

The derivation polynomial of a tame knot is a proper enhancement of the
quandle coloring invariant.

Let X be a quandle with matrix

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 3 5 7 9 11 2 4 6 8 10
11 2 4 6 8 10 1 3 5 7 9
10 1 3 5 7 9 11 2 4 6 8
9 11 2 4 6 8 10 1 3 5 7
8 10 1 3 5 7 9 11 2 4 6
7 9 11 2 4 6 8 10 1 3 5
6 8 10 1 3 5 7 9 11 2 4
5 7 9 11 2 4 6 8 10 1 3
4 6 8 10 1 3 5 7 9 11 2
3 5 7 9 11 2 4 6 8 10 1
2 4 6 8 10 1 3 5 7 9 11

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

.
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Derivation polynomial vs quandle coloring invariant

Consider the knots 4
1

and 5
2

. A GAP computation yields

|Hom
�
Q(4

1

),X
�
| = |Hom

�
Q(5

2

),X
�
| = 11

and

|Hom
�
Q(4

1

),Conj(Aut(X ))
�
| = |Hom

�
Q(5

2

),Conj(Aut(X ))
�
| = 330.

Thus, coloring by the quandles X and Conj
�
Aut(X )

�
do not distinguishes

the knots 4
1

and 5
2

.

Since |X | = 11, both the knots have only trivial colorings by X , and

Hom
�
Q(4

1

),X
� ⇠= Hom

�
Q(5

2

),X
� ⇠= X .

Thus, the hom quandle invariant of Crans-Nelson does not distinguish the
knots 4

1

and 5
2

.

The derivation polynomials are

D

X

(5
2

)(u) = 11 + 120u + 209u2

and
D

X

(4
1

)(u) = 11 + 230u + 99u2,

respectively, and hence distinguishes the knots.

In fact, the total derivation quandles D
�
Q(5

2

),X
�
and D

�
Q(4

1

),X
�
have

sizes 220 and 110, respectively.
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Residually finite groups

It is interesting to find new properties of knot quandles.

The notion of residual finiteness (and other residual properties) of
groups plays a crucial role in combinatorial group theory and low
dimensional topology.

A group G is called residually finite if for each g 2 G with g 6= 1,
there exists a finite group F and a homomorphism � : G ! F such
that �(g) 6= 1.

Equivalently, G is residually finite if and only if for g , h 2 G with
g 6= h, there exists a finite group F and a homomorphism
� : G ! F such that �(g) 6= �(h).
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Residually finite quandles

The preceding observation motivates the following definition.

Definition

A quandle X is said to be residually finite if for all x , y 2 X with x 6= y ,
there exists a finite quandle F and quandle homomorphism � : X ! F
such that �(x) 6= �(y).

Every trivial quandle is residually finite.

Every free quandle is residually finite [BSS, 2018].
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Knot quandle is residually finite

Theorem [BSS, 2018]

The knot quandle of a tame knot is residually finite.

We outline a proof now.
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Outline of proof

Let H be a subgroup of a group G , G/H the set of right cosets of H
in G and z 2 Z(H) a fixed element.

G/H with the binary operation

x̄ ⇤ ȳ = x̄(ȳ�1z̄ ȳ)

for x̄ , ȳ 2 G/H forms a quandle, denoted (G/H, z).

A subgroup H of a group G is said to be finitely separable in G if for
each g 2 G \ H, there exists a finite group F and a group
homomorphism � : G ! F such that �(g) 62 �(H).

Proposition-II

Let H be a subgroup of a group G . If H is finitely separable in G , then
the quandle (G/H, z) is residually finite.
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Outline of proof

Long and Niblo proved the following using the fact that doubling a
3-manifold along its boundary preserves residual finiteness.

Theorem [Long-Niblo, 1991]

Let M be an orientable, irreducible compact 3-manifold and X an
incompressible connected subsurface of a component of @(M). If p 2 X
is a base point, then ⇡

1

(X , p) is a finitely separable subgroup of ⇡
1

(M, p).

Let V (K ) be a tubular neighbourhood of a knot K in S3. Then the
knot complement C (K ) := S3 \ V (K ) has boundary @C (K ) a torus.

Let x
0

2 @C (K ),

◆⇤ : ⇡
1

�

@C (K ), x
0

�

�! ⇡
1

�

C (K ), x
0

�

the homomorphism induced by the inclusion, and
P := ◆⇤

�

⇡
1

(@C (K ), x
0

)
�

the peripheral subgroup of the knot group.

Corollary-III

The peripheral subgroup of a non-trivial tame knot is finitely separable in
the knot group.
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Outline of proof

By constructing a transitive action of the knot group of a tame knot
on its knot quandle , Joyce proved the following:

Proposition-IV

Let K be a tame knot with knot group G and knot quandle Q(K ). Let P
be the peripheral subgroup of G containing the meridian m. Then
Q(K ) ⇠= (G/P ,m).

We can now prove the main result.

Proof: Let K be a tame knot. If K is an unknot, then the knot
quandle Q(K ) is vacuously residually finite being a trivial quandle
with one element. If K is non-trivial, then using Proposition-II,
Corollary-III and Proposition-IV, it follows that Q(K ) is residually
finite.
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Open ends

Joyce’s proof of the complete invariance of the knot quandle (up to
orientation) of a tame knot depends heavily on the following result.

Theorem [Waldhausen [1968]

Let M and N be 3-manifold which are irreducible and boundary
irreducible. Let  : ⇡

1

(M) ! ⇡
1

(N) be an isomorphism which respects
the peripheral structure. Then there exists a homeomorphism f : M ! N
which induces  .

There are tame links whose complements in S3 are reducible
3-manifolds. Thus, quandles associated to tame links are not
complete invariants.

For the same reason, Theorem of Long and Niblo is not applicable
for tame links.
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Open ends

If L
n

is a trivial n-component link, then the link quandle Q(L
n

) is
isomorphic to the free quandle on n generators which is residually
finite [BSS, 2018].

Question

Let L be a tame link with more than one component. Is the link quandle
Q(L) residually finite?
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Thank you for your attention
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