Residual finiteness of quandles

Manpreet Singh

Indian Institute of Science Education and Research (IISER) Mohali, India

Joint work with Valeriy Bardakov and Mahender Singh

2nd International Conference

Groups and quandles in low-dimensional topology, Tomsk

June 25, 2019

Overview

Quandles

Examples

2 Knot theory

• Relation between quandles and knot theory

3 Residual finiteness property

Residual finiteness property and knot theory

4 Results

- First Main Result
- Second Main Result

5 Problems

Quandles

Manpreet Singh (IISER Mohali)

メロト メポト メヨト メヨト

A *quandle* is a non-empty set X with a binary operation $(x, y) \mapsto x * y$ satisfying the following axioms:

$$x * x = x \text{ for all } x \in X;$$

2 For any $x, y \in X$ there exists a unique $z \in X$ such that x = z * y;

③
$$(x * y) * z = (x * z) * (y * z)$$
 for all $x, y, z ∈ X$.

メロト メポト メヨト メヨト

• Conjugation quandle Conj(G): Let G be a group, then the set G equipped with the binary operation

$$a * b = b^{-1}ab$$

is a quandle.

• Conjugation quandle Conj(G): Let G be a group, then the set G equipped with the binary operation

$$a * b = b^{-1}ab$$

is a quandle.

Coset quandle (G, H, z): Let z ∈ G and H be a subgroup of G contained in C_G(z). Then G/H is a quandle as

$$Hx * Hy = Hz^{-1}xy^{-1}zy.$$

• Conjugation quandle Conj(G): Let G be a group, then the set G equipped with the binary operation

$$a * b = b^{-1}ab$$

is a quandle.

Coset quandle (G, H, z): Let z ∈ G and H be a subgroup of G contained in C_G(z). Then G/H is a quandle as

$$Hx * Hy = Hz^{-1}xy^{-1}zy.$$

• Let $\{z_i \mid i \in I\}$ elements of G, and $\{H_i \mid i \in I\}$ subgroups of G and H_i is contained in the centralizer $C_G(z_i)$ for each $i \in I$. Then

$$Q = \sqcup_{i \in I}(G, H_i, z_i)$$

is a quandle with

$$H_i x * H_j y = H_i z_i^{-1} x y^{-1} z_j y.$$

Manpreet Singh (IISER Mohali)

Knot theory

Manpreet Singh (IISER Mohali)

A link L is an embedding of finite disjoint union of circles in \mathbb{S}^3 . A link L with one component is called a knot.

A link L is an embedding of finite disjoint union of circles in \mathbb{S}^3 . A link L with one component is called a knot.

Definition

Two links L_1 and L_2 are said to be isotopic if there exist an isotopic deformation $\{h_t\}$ of \mathbb{S}^3 such that $h_1(L_1) = L_2$.

Relation between quandle and knot theory

In 1982 Matveev and Joyce (independently) associated to each oriented knot K a quandle Q(K) called the *knot quandle* and proved that the knot quandle is "almost" a complete invariant. Since then quandles have been investigated in order to construct knot and link invariants.

In 1982 Matveev and Joyce (independently) associated to each oriented knot K a quandle Q(K) called the *knot quandle* and proved that the knot quandle is "almost" a complete invariant. Since then quandles have been investigated in order to construct knot and link invariants.

Construction of a link quandle

- Let *L* be an oriented link in \mathbb{S}^3 with components K_1, K_2, \ldots, K_n .
- V(L) := Tubular neighborhood of L.
 V(L) = V(K₁) ⊔ V(K₂) ⊔ ... ⊔ V(K_n), where V(K_i) is a tubular neighborhood of K_i.
- Link complement $C(L) := \overline{\mathbb{S}^3 V(L)}$.
- Fix a base point $x_0 \in C(L)$.

• • = • • =

Construction of a link quandle

- Q(L) := Set of homotopy classes of paths in C(L) with initial point on the boundary ∂(V(L)) and end point at x₀.
- Let [a] and $[b] \in Q(L)$;
- $[a] * [b] := [ab^{-1}m_{b(0)}b].$

Then Q(L) is a quandle associated to link L and is known as the *link* quandle.

Construction of a link quandle

- Q(L) := Set of homotopy classes of paths in C(L) with initial point on the boundary ∂(V(L)) and end point at x₀.
- Let [a] and $[b] \in Q(L)$;
- $[a] * [b] := [ab^{-1}m_{b(0)}b].$

Then Q(L) is a quandle associated to link L and is known as the *link* quandle.

Theorem (Matveev-Joyce)

Let K and K' be two oriented knots in the \mathbb{S}^3 . Then, K is isotopic to either K or $-K'^*$ if and only if there exists a quandle isomorphism between the knot quandles Q_K and Q'_K .

Manpreet Singh (IISER Mohali)

A group G is said to be *residually finite* if for all $g, h \in G$ with $g \neq h$, there exists a finite group F and group homomorphism $\phi : G \to F$ such that $\phi(g) \neq \phi(h)$.

A group G is said to be *residually finite* if for all $g, h \in G$ with $g \neq h$, there exists a finite group F and group homomorphism $\phi : G \to F$ such that $\phi(g) \neq \phi(h)$.

Definition

A quandle X is said to be *residually finite* if for all $x, y \in X$ with $x \neq y$, there exists a finite quandle F and quandle homomorphism $\phi : X \to F$ such that $\phi(x) \neq \phi(y)$.

Residual finiteness property and knot theory

- Neuwirth (1965) showed that knot groups of fibered knots are residually finite and conjectured that every knot group is residually finite.
- Mayland (1972) proved it of twist knots, and Stebe extended the result to certain class of non-fibered knots.
- Thurston (1982) proved that knot groups are residually finite.
- Perelman's proof of the geometrization conjecture implies that the fundamental group of every compact 3-manifold is resdiually finite.

Results

3

メロト メポト メヨト メヨト

Theorem

If G is a residually finite group, then Conj(G) is a residually finite quandle.

Theorem

If G is a residually finite group, then Conj(G) is a residually finite quandle.

Theorem

Every free quandle is residually finite.

A quandle X is called *Hopfian* if every surjective quandle endomorphism of X is injective.

A quandle X is called *Hopfian* if every surjective quandle endomorphism of X is injective.

Theorem

Every finitely generated residually finite quandle is Hopfian.

Results

3

メロト メポト メヨト メヨト

Let X be a quandle. For each $x \in X$ the map $S_x : X \to X$ defined as $S_x(y) := y * x$ is called an inner automorphism. The group generated by all such automorphisms is called *inner automorphism group of quandle X* and denoted by Inn(X).

Let X be a quandle. For each $x \in X$ the map $S_x : X \to X$ defined as $S_x(y) := y * x$ is called an inner automorphism. The group generated by all such automorphisms is called *inner automorphism group of quandle X* and denoted by Inn(X).

Following is a well known result in group theory:

Theorem

Automorphism group of finitely generated residually finite group is residually finite.

.

Let X be a quandle. For each $x \in X$ the map $S_x : X \to X$ defined as $S_x(y) := y * x$ is called an inner automorphism. The group generated by all such automorphisms is called *inner automorphism group of quandle X* and denoted by Inn(X).

Following is a well known result in group theory:

Theorem

Automorphism group of finitely generated residually finite group is residually finite.

Theorem

Inner automorphism group of a residually finite quandle is residually finite.

(日) (四) (日) (日) (日)

Results: Word problem

• • • • • • • •

æ

Let $Q = \langle X | R \rangle$ be a quandle. If w_1, w_2 are two words in Q, how to decide whether w_1 is equal to w_2 are not?

Let $Q = \langle X | R \rangle$ be a quandle. If w_1, w_2 are two words in Q, how to decide whether w_1 is equal to w_2 are not?

Theorem (Belk-McGrail)

There exists a finitely presented quandle with undecidable word problem.

Let $Q = \langle X | R \rangle$ be a quandle. If w_1, w_2 are two words in Q, how to decide whether w_1 is equal to w_2 are not?

Theorem (Belk-McGrail)

There exists a finitely presented quandle with undecidable word problem.

Theorem

Every finitely presented residually finite quandle has a solvable word problem.

Manpreet Singh (IISER Mohali)

イロト イヨト イヨト

æ

Theorem

Knot quandles are residually finite.

V.G. Bardakov, M. Singh and M. Singh, *Free quandles and knot quandles are residually finite*, Proc. Amer. Math. Soc.(2019)

Manpreet Singh (IISER Mohali)

• • • • • • • •

æ

The proof is based on the following three results:

э

The proof is based on the following three results:

Theorem (Matveev-Joyce, 1982)

Let K be a knot. Then $Q(K) \cong (G(K), H, m)$, where Q(K) is the knot quandle, G(K) the knot group, H is the peripheral subgroup and m is the meridian of knot K.

The proof is based on the following three results:

Theorem (Matveev-Joyce, 1982)

Let K be a knot. Then $Q(K) \cong (G(K), H, m)$, where Q(K) is the knot quandle, G(K) the knot group, H is the peripheral subgroup and m is the meridian of knot K.

Theorem

Let G be a group and H a subgroup such that $H \leq C_G(z)$. If H is finitely separable in G, then (G, H, z) is a residually finite quandle.

The proof is based on the following three results:

Theorem (Matveev-Joyce, 1982)

Let K be a knot. Then $Q(K) \cong (G(K), H, m)$, where Q(K) is the knot quandle, G(K) the knot group, H is the peripheral subgroup and m is the meridian of knot K.

Theorem

Let G be a group and H a subgroup such that $H \leq C_G(z)$. If H is finitely separable in G, then (G, H, z) is a residually finite quandle.

Theorem (Long-Niblo, 1991)

Suppose that M is an orientable, irreducible compact 3-manifold and X an incompressible connected subsurface of a component of $\partial(M)$. If $p \in X$ is a base point, then $\pi_1(X, p)$ is a finitely separable subgroup of $\pi_1(M, p)$.

Second Main Result

Manpreet Singh (IISER Mohali)

Image: A mathematical states and a mathem

æ

Theorem

Link quandles are residually finite.

V.G. Bardakov, M. Singh and M. Singh, Link quandles are residually finite, arXiv:1902.03082

Main steps:

- In the second second
- Link quandle corresponding to non-split links are residually finite.(Proof follows same approach as in case knots.)
- Let $L = \{L_1, L_2, \dots, L_k\}$ where L_i are non split links. Then $Q(L) = Q(L_1) * Q(L_2) * \dots * Q(L_k)$.
- Second text and the free product of residually finite quandles.

Manpreet Singh (IISER Mohali)

э

Definition

Let $A = \langle X | R \rangle$ and $B = \langle Y | S \rangle$ be two quandles with non-intersecting set of generators. The free product A * B is a quandle defined by the presentation

$$A * B = \langle X \sqcup Y \mid R \sqcup S \rangle.$$

Definition

Let $A = \langle X | R \rangle$ and $B = \langle Y | S \rangle$ be two quandles with non-intersecting set of generators. The free product A * B is a quandle defined by the presentation

$$A * B = \langle X \sqcup Y \mid R \sqcup S \rangle.$$

Definition

The associated group As(Q) of a quandle Q is defined to be the group generated by the set $\{e_x \mid x \in Q\}$ modulo the relations $e_{x*y} = e_y^{-1}e_xe_y$ for all $x, y \in Q$.

Definition

Let $A = \langle X | R \rangle$ and $B = \langle Y | S \rangle$ be two quandles with non-intersecting set of generators. The free product A * B is a quandle defined by the presentation

$$A * B = \langle X \sqcup Y \mid R \sqcup S \rangle.$$

Definition

The associated group As(Q) of a quandle Q is defined to be the group generated by the set $\{e_x \mid x \in Q\}$ modulo the relations $e_{x*y} = e_y^{-1}e_xe_y$ for all $x, y \in Q$.

Theorem

Let $\{Q_i\}_{i \in I}$ be a family of residually finite quandles. If each As (Q_i) is a residually finite group, then the free product $\star_{i \in I} Q_i$ is a residually finite quandle.

Manpreet Singh (IISER Mohali)

Residual finiteness of quandles

Theorem (Matveev-Joyce)

For any link L, the associated group As (Q(L)) is isomorphic to link group G(L).

Theorem (Matveev-Joyce)

For any link L, the associated group As (Q(L)) is isomorphic to link group G(L).

Main steps:

- Knot quandles are residually finite.
- Link quandle corresponding to non-split links are residually finite.(Proof follows same approach as in case knots.)
- Let $L = \{L_1, L_2, \dots, L_k\}$ where L_i are non split links. Then $Q(L) = Q(L_1) * Q(L_2) * \dots * Q(L_k)$.
- The free product of residually finite quandles is residually finite provided their associated groups are residually finite.
- S Link quandles are residually finite.

Corollary

Let L be a link in \mathbb{S}^3 . Then the following are true:

- Word problem is solvable in Q(L).
- **2** $\operatorname{Inn}(Q(L))$ is residually finite.
- **3** Q(L) is Hopfian.

- Let X be a finitely generated residually finite quandle. Is it true that Aut(X) is a residually finite group?
- Let X be a residually finite quandle. Is it true that As(X) is residually finite?
- Is it true that free product of residually finite quandles is residually finite?

Thank you!

Image: A mathematical states and a mathem

æ