General constructions of biquandles and their symmetries

Timur Nasybullov
Novosibirsk \& Tomsk, Russia timur.nasybullov@mail.ru

Groups and quandles in low-dimensional topology 03.10.2020

Contents

V. Bardakov, T. Nasybullov, M. Singh, General constructions of biquandles and their symmetries, Arxiv:Math/1908.08301

- Definitions
- Motivation
- Fresh results
- Open problems

Quandles

Quandle Q is an algebraic system $(Q, *)$ such that $1 \quad x * x=x$ for all $x \in Q$
2 The map $S_{x}: y \mapsto y * x$ is a bijection of Q
$3(x * y) * z=(x * z) *(y * z)$ for all $x, y, z \in Q$

Quandles

Quandle Q is an algebraic system $(Q, *)$ such that
$1 \quad x * x=x$ for all $x \in Q$
2 The map $S_{x}: y \mapsto y * x$ is a bijection of Q
$3 \quad(x * y) * z=(x * z) *(y * z)$ for all $x, y, z \in Q$
For a link L the quandle $Q(L)$ is the quandle with Generators: labels on the arcs
Relations: $x * y=z$ near all crossings, where the labels are

Quandles

Quandle Q is an algebraic system $(Q, *)$ such that
$1 \quad x * x=x$ for all $x \in Q$
2 The map $S_{x}: y \mapsto y * x$ is a bijection of Q
$3 \quad(x * y) * z=(x * z) *(y * z)$ for all $x, y, z \in Q$
For a link L the quandle $Q(L)$ is the quandle with Generators: labels on the arcs
Relations: $x * y=z$ near all crossings, where the labels are

Theorem (Joyce 1982, Matveev 1982)
Two knot quandles $Q\left(K_{1}\right)$ and $Q\left(K_{2}\right)$ are isomorphic if and only if K_{1} and K_{2} are weakly equivalent

Quandle of a virtual link

For a virtual link L the quandle $Q(L)$ is the quandle with Generators: labels on long arcs
Relations: $x * y=z$ near all crossings, where the labels are

Quandle of a virtual link

For a virtual link L the quandle $Q(L)$ is the quandle with Generators: labels on long arcs
Relations: $x * y=z$ near all crossings, where the labels are

Theorem (Kauffman 1999)

The quandle $Q(L)$ is an invariant for virtual links

Quandle of a virtual link

For a virtual link L the quandle $Q(L)$ is the quandle with Generators: labels on long arcs
Relations: $x * y=z$ near all crossings, where the labels are

Theorem (Kauffman 1999)

The quandle $Q(L)$ is an invariant for virtual links
This invariant doesn't distinguish the virtual trefoil knot from the unknot

Biquandles

R. Fenn, M. Jordan-Santana, L. Kauffman, Biquandles and virtual links, Topology Appl., V. 145, N. 1-3, 2004, 157-175

Biquandles

R. Fenn, M. Jordan-Santana, L. Kauffman, Biquandles and virtual links, Topology Appl., V. 145, N. 1-3, 2004, 157-175
E. Horvat, Constructing biquandles, Fund. Math., V. 251, N. 2, 2020, 203-218

Biquandles

R. Fenn, M. Jordan-Santana, L. Kauffman, Biquandles and virtual links, Topology Appl., V. 145, N. 1-3, 2004, 157-175
E. Horvat, Constructing biquandles, Fund. Math., V. 251, N. 2, 2020, 203-218
Biquandle B is an algebraic system ($B, \underline{*}, \bar{*}$) such that
$1 \quad x * x=x \bar{*} x$ for all $x \in B$,
2 the maps $\alpha_{y}, \beta_{y}: B \rightarrow B$ and $S: B \times B \rightarrow B \times B$ given by $\alpha_{y}(x)=x \underline{*} y, \beta_{y}(x)=x \bar{*} y, S(x, y)=(y \bar{*} x, x \underline{*} y)$ are bijections for all $y \in B$,
3 the equalities

$$
\begin{aligned}
& 1(x \underline{*} y) \underline{*}(z \underline{*} y)=(x \underline{*} z) \underline{*}(y \neq z), \\
& 2(x \notin y) \bar{*}(z \underline{*} y)=(x \bar{*} z) \underline{*}(y \bar{*} z) \text {, }
\end{aligned}
$$

hold for all $x, y, z \in B$

Biquandle of a virtual link

For a virtual link L the biquandle $B(L)$ is the biquandle with Generators: labels on semiarcs
Relations:

Biquandle of a virtual link

For a virtual link L the biquandle $B(L)$ is the biquandle with Generators: labels on semiarcs
Relations:

Theorem (Fenn-(Jordan-Santana)-Kauffman 2004)
The biquandle $B(L)$ is an invariant for virtual links

Biquandle of a virtual link

Conjecture (Fenn-(Jordan-Santana)-Kauffman 2004)
The biquandle $B(L)$ is an almost complete invariant for virtual links

Biquandle of a virtual link

Conjecture (Fenn-(Jordan-Santana)-Kauffman 2004)
The biquandle $B(L)$ is an almost complete invariant for virtual links

It is difficult to find $B(L)$

Biquandle of a virtual link

Conjecture (Fenn-(Jordan-Santana)-Kauffman 2004)
The biquandle $B(L)$ is an almost complete invariant for virtual links

It is difficult to find $B(L)$
It is difficult to work with $B(L)$

Biquandle of a virtual link

Conjecture (Fenn-(Jordan-Santana)-Kauffman 2004)

The biquandle $B(L)$ is an almost complete invariant for virtual links

It is difficult to find $B(L)$
It is difficult to work with $B(L)$
The number of homomorphisms from $B(L)$ to a given biquandle B is an invariant for virtual links

Biquandle of a virtual link

Conjecture (Fenn-(Jordan-Santana)-Kauffman 2004)

The biquandle $B(L)$ is an almost complete invariant for virtual links

It is difficult to find $B(L)$
It is difficult to work with $B(L)$
The number of homomorphisms from $B(L)$ to a given biquandle B is an invariant for virtual links

Problem

Find canonical constructions of biquandles from quandles, groups, biquandles, etc

Biquandle on a union of quandles $Q_{1} \sqcup Q_{2}$
Let $Q_{1}=\left(X_{1}, *_{1}\right), Q_{2}=\left(X_{2}, *_{2}\right)$ be quandles

Biquandle on a union of quandles $Q_{1} \sqcup Q_{2}$

Let $Q_{1}=\left(X_{1}, *_{1}\right), Q_{2}=\left(X_{2}, *_{2}\right)$ be quandles, and let $\phi: Q_{1} \rightarrow \operatorname{Conj}_{-1}\left(\operatorname{Aut}\left(Q_{2}\right)\right)$ and $\psi: Q_{2} \rightarrow \operatorname{Conj}_{-1}\left(\operatorname{Aut}\left(Q_{1}\right)\right)$ be quandle homomorphisms such that

$$
\phi_{x_{1}}=\phi_{\psi_{x_{2}}\left(x_{1}\right)}, \quad \psi_{x_{2}}=\psi_{\phi_{x_{1}}\left(x_{2}\right)}
$$

for all $x_{1} \in Q_{1}, x_{2} \in Q_{2}$.

Biquandle on a union of quandles $Q_{1} \sqcup Q_{2}$

Let $Q_{1}=\left(X_{1}, *_{1}\right), Q_{2}=\left(X_{2}, *_{2}\right)$ be quandles, and let $\phi: Q_{1} \rightarrow \operatorname{Conj}_{-1}\left(\operatorname{Aut}\left(Q_{2}\right)\right)$ and $\psi: Q_{2} \rightarrow \operatorname{Conj}_{-1}\left(\operatorname{Aut}\left(Q_{1}\right)\right)$ be quandle homomorphisms such that

$$
\phi_{x_{1}}=\phi_{\psi_{x_{2}}\left(x_{1}\right)}, \quad \psi_{x_{2}}=\psi_{\phi_{x_{1}}\left(x_{2}\right)}
$$

for all $x_{1} \in Q_{1}, x_{2} \in Q_{2}$. Then the set $X=X_{1} \sqcup X_{2}$ with the operations $\bar{*}, \underline{*}$ given by

$$
\begin{aligned}
a, b \in X_{1} & \Rightarrow a \nexists b=a, a \not a b b=a *_{1} b \\
a, b \in X_{2} & \Rightarrow a \nexists b=a, a \underline{*} b=a *_{2} b \\
a \in X_{1}, b \in X_{2} & \Rightarrow a \nexists b=\psi_{b}(a), a \not 2 b=\psi_{b}(a) \\
a \in X_{2}, b \in X_{1} & \Rightarrow a \neq b=\phi_{b}(a), a \underline{*} b=\phi_{b}(a)
\end{aligned}
$$

is a biquandle

Biquandle on a product of quandles $Q_{1} \times Q_{2}$

Let $Q_{1}=\left(X_{1}, *_{1}\right), Q_{2}=\left(X_{2}, *_{2}\right)$ be quandles, and $\psi: Q_{2} \rightarrow \operatorname{Conj}_{-1}\left(\operatorname{Aut}\left(Q_{1}\right)\right)$ be a quandle homomorphism. Then the set $X_{1} \times X_{2}$ with the operations

$$
\begin{aligned}
(x, a)_{\star}(y, b) & =\left(\psi_{b}\left(x *_{1} y\right), a\right) \\
(x, a) \bar{*}(y, b) & =\left(\psi_{b}(x), a *_{2} b\right)
\end{aligned}
$$

for $(x, a),(y, b) \in X_{1} \times X_{2}$ is a biquandle.

Problems

General problem: Find canonical constructions of biquandles from quandles, groups, biquandles, etc

Problems

General problem: Find canonical constructions of biquandles from quandles, groups, biquandles, etc

- V. Bardakov, T. Nasybullov, M. Singh, Automorphism groups of quandles and related groups, Monatsh. Math., V. 189, N. 1, 2019, 1-21
- V. Bardakov, T. Nasybullov, Embeddings of quandles into groups, J. Algebra Appl., V. 19, N. 7, 2020, 2050136
- V. Bardakov, T. Nasybullov, M. Singh, General constructions of biquandles and their symmetries, Arxiv:Math/1908.08301

Problems

General problem: Find canonical constructions of biquandles from quandles, groups, biquandles, etc

- V. Bardakov, T. Nasybullov, M. Singh, Automorphism groups of quandles and related groups, Monatsh. Math., V. 189, N. 1, 2019, 1-21
- V. Bardakov, T. Nasybullov, Embeddings of quandles into groups, J. Algebra Appl., V. 19, N. 7, 2020, 2050136
- V. Bardakov, T. Nasybullov, M. Singh, General constructions of biquandles and their symmetries, Arxiv:Math/1908.08301
Specific problems:
- Find all biquandles on n elements such that $a \bar{*} b=a \neq b$ for all a, b. W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math., V. 193, N. 1, 2005, 40-55.
- Give a general definition of a semidirect product of (bi)quandles M. Castelli, F. Catino, P. Stefanelli, Left non-degenerate set-theoretic solutions of the Yang-Baxter equation and dynamical extensions of q-cycle sets, ArXiv:Math/2001.10774
- Does there exist an integer N such that every biquandle B of order at least N has a non-trivial automorphism?

