Linear and uniformly continuous surjections between C_p -spaces

Dedicated to S. Gul'ko on the occasion of his 75th birthday

Vesko Valov

(jointly with A. Eysen and A. Leiderman)

June 12, 2025

It is my pleasure to present a talk at the conference dedicated to Prof. Sergey Gul'ko. I have rectly the opportunity to study Gul'ko's paper about preservation of the dimension by uniform homeomorphisms between C_p -spaces. The technique which was developed by Gul'ko in that paper, and specially the so called Gul'ko supports' are one of the most interesting and helpful achievemnts in C_p -theory.

Motivation

The C_p -theory was introduced by Arhangel'skii and his students (recall that for a Tychonoff space X the set of all continuous functions on X with the pointwise convergence topology is denoted by $C_p(X)$).

One of the main directions in C_p -theory is the investigation of properties $\mathcal P$ such that if $X\in \mathcal P$ and $C_p(X)$ is linearly or uniformly homeomorphic to $C_p(Y)$, then $Y\in \mathcal P$. Probably, the best results in that direction are Pestov's theorem, stating that if $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic, then $\dim X = \dim Y$, and Uspenskii's theorem that pseudocompactness and compactness are determined by the uniform structure of C_p -spaces.

Let's note that if we consider the function spaces with the uniform convergence, the Pestov's result is not anymore true. Indeed, according to classical Milyutin's theorem if X and Y are uncountable metric compacta, then their function spaces C(X) and C(Y) equipped with the sup metric are linearly homeomorphic.

Motivation

The C_p -theory was introduced by Arhangel'skii and his students (recall that for a Tychonoff space X the set of all continuous functions on X with the pointwise convergence topology is denoted by $C_p(X)$).

One of the main directions in C_p -theory is the investigation of properties $\mathcal P$ such that if $X\in \mathcal P$ and $C_p(X)$ is linearly or uniformly homeomorphic to $C_p(Y)$, then $Y\in \mathcal P$. Probably, the best results in that direction are Pestov's theorem, stating that if $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic, then $\dim X = \dim Y$, and Uspenskii's theorem that pseudocompactness and compactness are determined by the uniform structure of C_p -spaces.

Let's note that if we consider the function spaces with the uniform convergence, the Pestov's result is not anymore true. Indeed, according to classical Milyutin's theorem if X and Y are uncountable metric compacta, then their function spaces C(X) and C(Y) equipped with the sup metric are linearly homeomorphic.

Motivation

The C_p -theory was introduced by Arhangel'skii and his students (recall that for a Tychonoff space X the set of all continuous functions on X with the pointwise convergence topology is denoted by $C_p(X)$).

One of the main directions in C_p -theory is the investigation of properties $\mathcal P$ such that if $X\in \mathcal P$ and $C_p(X)$ is linearly or uniformly homeomorphic to $C_p(Y)$, then $Y\in \mathcal P$. Probably, the best results in that direction are Pestov's theorem, stating that if $C_p(X)$ and $C_p(Y)$ are linearly homeomorphic, then $\dim X = \dim Y$, and Uspenskii's theorem that pseudocompactness and compactness are determined by the uniform structure of C_p -spaces.

Let's note that if we consider the function spaces with the uniform convergence, the Pestov's result is not anymore true. Indeed, according to classical Milyutin's theorem if X and Y are uncountable metric compacta, then their function spaces C(X) and C(Y) equipped with the sup metric are linearly homeomorphic.

Pestov's result was generalized by Gul'ko who proved that $\dim X = \dim Y$ providing $C_p(X)$ and $C_p(Y)$ are uniformly homeomorphic (recall that a map $T: C_p(X) \to C_p(Y)$ is uniformly continuous if for every neighborhood U of 0_Y there is a nbd V of 0_X such that $T(f) - T(g) \in U$ provided $f - g \in V$).

Gul'ko's result motivated the investigation of properties \mathcal{P} such that if $X \in \mathcal{P}$ and $C_p(X)$ is uniformly homeomorphic to $C_p(Y)$, then $Y \in \mathcal{P}$.

Another direction in the C_p -theory is to investigate properties $\mathcal P$ such that if $X\in \mathcal P$ and there is a linear continuous (or uniformly continuous) surjection $T:C_p(X)\to C_p(Y)$, then $Y\in \mathcal P$. For example, in the class of metrizable spaces completeness is preserved by linear continuous surjections (Baars-de Groot-Pelant), while other absolute Borel classes are preserved by uniformly continuous surjections (Marciszewski-Pelant). Moreover, absolute Borel classes greater than 2 and all projective classes are preserved by homeomorphisms between $C_p(X)$ and $C_p(Y)$ when X, Y are metrizable (Marciszewski).

Pestov's result was generalized by Gul'ko who proved that $\dim X = \dim Y$ providing $C_p(X)$ and $C_p(Y)$ are uniformly homeomorphic (recall that a map $T: C_p(X) \to C_p(Y)$ is uniformly continuous if for every neighborhood U of 0_Y there is a nbd V of 0_X such that $T(f) - T(g) \in U$ provided $f - g \in V$).

Gul'ko's result motivated the investigation of properties \mathcal{P} such that if $X \in \mathcal{P}$ and $C_p(X)$ is uniformly homeomorphic to $C_p(Y)$, then $Y \in \mathcal{P}$.

Another direction in the C_p -theory is to investigate properties $\mathcal P$ such that if $X\in \mathcal P$ and there is a linear continuous (or uniformly continuous) surjection $T:C_p(X)\to C_p(Y)$, then $Y\in \mathcal P$. For example, in the class of metrizable spaces completeness is preserved by linear continuous surjections (Baars-de Groot-Pelant), while other absolute Borel classes are preserved by uniformly continuous surjections (Marciszewski-Pelant). Moreover, absolute Borel classes greater than 2 and all projective classes are preserved by homeomorphisms between $C_p(X)$ and $C_p(Y)$ when X, Y are metrizable (Marciszewski).

Pestov's result was generalized by Gul'ko who proved that $\dim X = \dim Y$ providing $C_p(X)$ and $C_p(Y)$ are uniformly homeomorphic (recall that a map $T: C_p(X) \to C_p(Y)$ is uniformly continuous if for every neighborhood U of 0_Y there is a nbd V of 0_X such that $T(f) - T(g) \in U$ provided $f - g \in V$).

Gul'ko's result motivated the investigation of properties \mathcal{P} such that if $X \in \mathcal{P}$ and $C_p(X)$ is uniformly homeomorphic to $C_p(Y)$, then $Y \in \mathcal{P}$.

Another direction in the C_p -theory is to investigate properties $\mathcal P$ such that if $X\in \mathcal P$ and there is a linear continuous (or uniformly continuous) surjection $T:C_p(X)\to C_p(Y)$, then $Y\in \mathcal P$. For example, in the class of metrizable spaces completeness is preserved by linear continuous surjections (Baars-de Groot-Pelant), while other absolute Borel classes are preserved by uniformly continuous surjections (Marciszewski-Pelant). Moreover, absolute Borel classes greater than 2 and all projective classes are preserved by homeomorphisms between $C_p(X)$ and $C_p(Y)$ when X, Y are metrizable (Marciszewski).

On the other hand, Leiderma-Levin-Pestov proved that the Arhangelskii question has a positive answer in dimension 0 when *X* and *Y* are metric compacta. The last result was extended for arbitrary compact spaces by Kawamura-Leiderman.

Kawamura-Leiderman asked if their result remains true for arbitrary Tychonoff spaces. This question was the starting point for our research.

On the other hand, Leiderma-Levin-Pestov proved that the Arhangelskii question has a positive answer in dimension 0 when *X* and *Y* are metric compacta. The last result was extended for arbitrary compact spaces by Kawamura-Leiderman.

Kawamura-Leiderman asked if their result remains true for arbitrary Tychonoff spaces. This question was the starting point for our research.

On the other hand, Leiderma-Levin-Pestov proved that the Arhangelskii question has a positive answer in dimension 0 when *X* and *Y* are metric compacta. The last result was extended for arbitrary compact spaces by Kawamura-Leiderman.

Kawamura-Leiderman asked if their result remains true for arbitrary Tychonoff spaces. This question was the starting point for our research.

On the other hand, Leiderma-Levin-Pestov proved that the Arhangelskii question has a positive answer in dimension 0 when *X* and *Y* are metric compacta. The last result was extended for arbitrary compact spaces by Kawamura-Leiderman.

Kawamura-Leiderman asked if their result remains true for arbitrary Tychonoff spaces. This question was the starting point for our research.

Theorem 1 [Eysen-V]

If there is a linear continuous surjection $T: C_p(X) \to C_p(Y)$, then $\dim X = 0$ implies $\dim Y = 0$.

We consider properties \mathcal{P} of metric spaces such that

- (a) if $X \in \mathcal{P}$ and $F \subset X$ is closed, then $F \in \mathcal{P}$;
- (b) \mathcal{P} is closed under finite products;
- (c) if X is a countable union of closed subsets each having the property P, then X ∈ P;
- (d) if f: X → Y is a perfect map with countable fibers and Y ∈ P, then X ∈ P;
- (e) if $X \in \mathcal{P}$ and $F \subset X$, then $F \in \mathcal{P}$

Theorem 1 [Eysen-V]

If there is a linear continuous surjection $T: C_p(X) \to C_p(Y)$, then $\dim X = 0$ implies $\dim Y = 0$.

We consider properties ${\cal P}$ of metric spaces such that:

- (a) if $X \in \mathcal{P}$ and $F \subset X$ is closed, then $F \in \mathcal{P}$
- (b) \mathcal{P} is closed under finite products;
- (c) if X is a countable union of closed subsets each having the property P, then X ∈ P;
- (d) if $f: X \to Y$ is a perfect map with countable fibers and $Y \in \mathcal{P}$, then $X \in \mathcal{P}$;
- (e) if $X \in \mathcal{P}$ and $F \subset X$, then $F \in \mathcal{P}$.

Theorem 1 [Eysen-V]

If there is a linear continuous surjection $T: C_p(X) \to C_p(Y)$, then $\dim X = 0$ implies $\dim Y = 0$.

We consider properties ${\cal P}$ of metric spaces such that:

- (a) if $X \in \mathcal{P}$ and $F \subset X$ is closed, then $F \in \mathcal{P}$;
- (b) \mathcal{P} is closed under finite products;
- (c) if X is a countable union of closed subsets each having the property P, then X ∈ P;
- (d) if $f: X \to Y$ is a perfect map with countable fibers and $Y \in \mathcal{P}$, then $X \in \mathcal{P}$;
- (e) if $X \in \mathcal{P}$ and $F \subset X$, then $F \in \mathcal{P}$.

Theorem 1 [Eysen-V]

If there is a linear continuous surjection $T: C_p(X) \to C_p(Y)$, then $\dim X = 0$ implies $\dim Y = 0$.

We consider properties $\ensuremath{\mathcal{P}}$ of metric spaces such that:

- (a) if $X \in \mathcal{P}$ and $F \subset X$ is closed, then $F \in \mathcal{P}$;
- (b) \mathcal{P} is closed under finite products;
- (c) if X is a countable union of closed subsets each having the property P, then X ∈ P;
- (d) if $f: X \to Y$ is a perfect map with countable fibers and $Y \in \mathcal{P}$, then $X \in \mathcal{P}$;
- (e) if $X \in \mathcal{P}$ and $F \subset X$, then $F \in \mathcal{P}$.

Theorem 1 [Eysen-V]

If there is a linear continuous surjection $T: C_p(X) \to C_p(Y)$, then $\dim X = 0$ implies $\dim Y = 0$.

We consider properties ${\cal P}$ of metric spaces such that:

- (a) if $X \in \mathcal{P}$ and $F \subset X$ is closed, then $F \in \mathcal{P}$;
- (b) \mathcal{P} is closed under finite products;
- (c) if X is a countable union of closed subsets each having the property \mathcal{P} , then $X \in \mathcal{P}$;
- (d) if $f: X \to Y$ is a perfect map with countable fibers and $Y \in \mathcal{P}$, then $X \in \mathcal{P}$;
- (e) if $X \in \mathcal{P}$ and $F \subset X$, then $F \in \mathcal{P}$.

Theorem 1 [Eysen-V]

If there is a linear continuous surjection $T: C_p(X) \to C_p(Y)$, then $\dim X = 0$ implies $\dim Y = 0$.

We consider properties ${\cal P}$ of metric spaces such that:

- (a) if $X \in \mathcal{P}$ and $F \subset X$ is closed, then $F \in \mathcal{P}$;
- (b) \mathcal{P} is closed under finite products;
- (c) if X is a countable union of closed subsets each having the property \mathcal{P} , then $X \in \mathcal{P}$;
- (d) if $f: X \to Y$ is a perfect map with countable fibers and $Y \in \mathcal{P}$, then $X \in \mathcal{P}$;
- (e) if $X \in \mathcal{P}$ and $F \subset X$, then $F \in \mathcal{P}$.

Theorem 1 [Eysen-V]

If there is a linear continuous surjection $T: C_p(X) \to C_p(Y)$, then $\dim X = 0$ implies $\dim Y = 0$.

We consider properties ${\cal P}$ of metric spaces such that:

- (a) if $X \in \mathcal{P}$ and $F \subset X$ is closed, then $F \in \mathcal{P}$;
- (b) \mathcal{P} is closed under finite products;
- (c) if X is a countable union of closed subsets each having the property \mathcal{P} , then $X \in \mathcal{P}$;
- (d) if $f: X \to Y$ is a perfect map with countable fibers and $Y \in \mathcal{P}$, then $X \in \mathcal{P}$;
- (e) if $X \in \mathcal{P}$ and $F \subset X$, then $F \in \mathcal{P}$.

Theorem 1 [Eysen-V]

If there is a linear continuous surjection $T: C_p(X) \to C_p(Y)$, then $\dim X = 0$ implies $\dim Y = 0$.

We consider properties ${\cal P}$ of metric spaces such that:

- (a) if $X \in \mathcal{P}$ and $F \subset X$ is closed, then $F \in \mathcal{P}$;
- (b) \mathcal{P} is closed under finite products;
- (c) if X is a countable union of closed subsets each having the property \mathcal{P} , then $X \in \mathcal{P}$;
- (d) if $f: X \to Y$ is a perfect map with countable fibers and $Y \in \mathcal{P}$, then $X \in \mathcal{P}$;
- (e) if $X \in \mathcal{P}$ and $F \subset X$, then $F \in \mathcal{P}$.

In the class of metrizable spaces, Theorem 1 has a stronger analogue:

Theorem 2 [Eysen-Leiderman-V]

Let $T: D_p(X) \to D_p(Y)$ be a linear continuous surjection and $\mathcal P$ be a topological property satisfying either conditions (a)-(d) or (b)-(e). If X is a metric space and Y is perfectly normal, then Y has the property $\mathcal P$ provided $X \in \mathcal P$.

Here $D_p(X)$ denote either $C_p(X)$ or $C_p^*(X)$, where $C_p^*(X)$ is the set of bounded continuous functions with the pointwise topology.

We say that a surjection $T:D_p(X)\to D_p(Y)$ is *inversely bounded* if for every norm bounded sequence $\{g_n\}\subset C^*(Y)$ there is a norm bounded sequence $\{f_n\}\subset C^*(X)$ with $T(f_n)=g_n$ for each n. The following notion was introduced by Gartside-Feng: A map $T:D_p(X)\to D_p(Y)$ is c-good if for every $g\in C^*(Y)$ there is $f\in C^*(X)$ with $||f||\leq c.||g||$. Note that every linearly continuous surjection $T:C^*_p(X)\to C^*_p(Y)$ is inversely bounded, as wee as every c-good map.

In the class of metrizable spaces, Theorem 1 has a stronger analogue:

Theorem 2 [Eysen-Leiderman-V]

Let $T: D_p(X) \to D_p(Y)$ be a linear continuous surjection and $\mathcal P$ be a topological property satisfying either conditions (a)-(d) or (b)-(e). If X is a metric space and Y is perfectly normal, then Y has the property $\mathcal P$ provided $X \in \mathcal P$.

Here $D_p(X)$ denote either $C_p(X)$ or $C_p^*(X)$, where $C_p^*(X)$ is the set of bounded continuous functions with the pointwise topology.

We say that a surjection $T:D_p(X)\to D_p(Y)$ is *inversely bounded* if for every norm bounded sequence $\{g_n\}\subset C^*(Y)$ there is a norm bounded sequence $\{f_n\}\subset C^*(X)$ with $T(f_n)=g_n$ for each n. The following notion was introduced by Gartside-Feng: A map $T:D_p(X)\to D_p(Y)$ is c-good if for every $g\in C^*(Y)$ there is $f\in C^*(X)$ with $||f||\leq c.||g||$. Note that every linearly continuous surjection $T:C^*_p(X)\to C^*_p(Y)$ is inversely bounded, as wee as every c-good map.

Theorem 3 [Eysen-V]

Let $T: D_p(X) \to D_p(Y)$ be a c-good uniformly continuous surjection. Then Y is 0-dimensional provided so is X.

Corollary [Eysen-V]

Let $T: C_p^*(X) \to D_p(Y)$ be a linear continuous surjection. Then Y is 0-dimensional provided so is X.

Theorem 3 has a stronger version in case X is metrizable and Y is perfectly normal:

Theorem 4 [Eysen-Leiderman-V]

Let $T: D_p(X) \to D_p(Y)$ be an inversely bounded uniformly continuous surjection and \mathcal{P} be a topological property satisfying either conditions (a) - (d) or (b) - (e), where X is metrizable and Y is perfectly normal. Then Y has the property \mathcal{P} provided $X \in \mathcal{P}$.

In particular, Theorem 3 is true if \mathcal{P} is countable-dimensional or strongly countable-dimensional.

Theorem 3 [Eysen-V]

Let $T: D_p(X) \to D_p(Y)$ be a c-good uniformly continuous surjection. Then Y is 0-dimensional provided so is X.

Corollary [Eysen-V]

Let $T: C_p^*(X) \to D_p(Y)$ be a linear continuous surjection. Then Y is 0-dimensional provided so is X.

Theorem 3 has a stronger version in case X is metrizable and Y is perfectly normal:

Theorem 4 [Eysen-Leiderman-V

Let $T: D_p(X) \to D_p(Y)$ be an inversely bounded uniformly continuous surjection and $\mathcal P$ be a topological property satisfying either conditions (a) - (d) or (b) - (e), where X is metrizable and Y is perfectly normal. Then Y has the property $\mathcal P$ provided $X \in \mathcal P$.

In particular, Theorem 3 is true if \mathcal{P} is countable-dimensional or strongly countable-dimensional.

Theorem 3 [Eysen-V]

Let $T: D_p(X) \to D_p(Y)$ be a c-good uniformly continuous surjection. Then Y is 0-dimensional provided so is X.

Corollary [Eysen-V]

Let $T: C_p^*(X) \to D_p(Y)$ be a linear continuous surjection. Then Y is 0-dimensional provided so is X.

Theorem 3 has a stronger version in case X is metrizable and Y is perfectly normal:

Theorem 4 [Eysen-Leiderman-V]

Let $T: D_p(X) \to D_p(Y)$ be an inversely bounded uniformly continuous surjection and \mathcal{P} be a topological property satisfying either conditions (a) - (d) or (b) - (e), where X is metrizable and Y is perfectly normal. Then Y has the property \mathcal{P} provided $X \in \mathcal{P}$.

In particular, Theorem 3 is true if \mathcal{P} is countable-dimensional or strongly countable-dimensional.

Proofs

Proof of Theorem 3

A subset $E(X) \subset C(X)$ is called a *QS*-algebra (Gul'ko) if:

- (i) $f+g, f\cdot g$ and $\lambda.f$ belong to E(X) provided $f,g\in E(X)$ and λ is a rational number;
- (ii) For every $x \in X$ there is a its nbd U there exists $f \in E(X)$ such that f(X) = 1 and $f(X \setminus U) = 0$.

Following Gul'ko, the proof is reduced to the following proposition:

Proposition 1

Let \overline{X} and \overline{Y} be metric compactifications of X and Y, and $H \subset \overline{X}$ be a σ -compact space containing X. Suppose E(H) is a QS-algebra on H, $E(X) = \{\overline{f} | X : \overline{f} \in E(H)\}$ and $E(Y) \subset C(Y)$ is a family such that every $g \in E(Y)$ is extendable to a map $\overline{g} : \overline{Y} \to \overline{\mathbb{R}}$ and $E(\overline{Y}) = \{\overline{g} : g \in E(Y)\}$ containing a QS-algebra Γ on \overline{Y} . Let also $\varphi : E_{\rho}(X) \to E_{\rho}(Y)$ be an uniformly continuous surjection which is inversely bounded. If H has a property \mathcal{P} satisfying conditions (a) - (d), then there exists

990

Proofs

Proof of Theorem 3

A subset $E(X) \subset C(X)$ is called a *QS*-algebra (Gul'ko) if:

- (i) $f+g, f\cdot g$ and $\lambda.f$ belong to E(X) provided $f,g\in E(X)$ and λ is a rational number;
- (ii) For every $x \in X$ there is a its nbd U there exists $f \in E(X)$ such that f(X) = 1 and $f(X \setminus U) = 0$.

Following Gul'ko, the proof is reduced to the following proposition:

Proposition 1

Let \overline{X} and \overline{Y} be metric compactifications of X and Y, and $H \subset \overline{X}$ be a σ -compact space containing X. Suppose E(H) is a QS-algebra on H, $E(X) = \{\overline{f} | X : \overline{f} \in E(H)\}$ and $E(Y) \subset C(Y)$ is a family such that every $g \in E(Y)$ is extendable to a map $\overline{g} : \overline{Y} \to \overline{\mathbb{R}}$ and $E(\overline{Y}) = \{\overline{g} : g \in E(Y)\}$ containing a QS-algebra Γ on \overline{Y} . Let also $\varphi : E_p(X) \to E_p(Y)$ be an uniformly continuous surjection which is inversely bounded. If H has a property \mathcal{P} satisfying conditions (a) - (d), then there exists

200

a σ -compact set $Y_{\infty} \subset \overline{Y}$ containing Y with $Y_{\infty} \in \mathcal{P}$.

Proof of Proposition 1

For every $\overline{f} \in E(H)$ denote by f the restriction $\overline{f}|X$. For every $y \in \overline{Y}$ there is a map $\alpha_y : E(H) \to \overline{\mathbb{R}}, \ \alpha_y(\overline{f}) = \overline{\varphi(f)}(y)$. Since φ is uniformly continuous, so is each $\alpha_y | E_p(X), \ y \in Y$.

Suppose $H = \bigcup_k H_k$ is the union of an increasing sequence $\{H_k\}$ of compact sets.

We use the idea of supports introduced by Gul'ko and the extension of that notion introduced by Mikolaj Krupski. For every $y \in \overline{Y}$ and every $p, k \in \mathbb{N}$ we define the families

$$\begin{split} \mathcal{A}^k(y) &= \{K \subset H_k : K \text{ is closed and } a(y,K) < \infty \} \text{ and } \\ \mathcal{A}^k_p(y) &= \{K \subset H_k : K \text{ is closed and } a(y,K) \leq p \}, \text{ where } \\ a(y,K) &= \sup\{|\alpha_y(\overline{f}) - \alpha_y(\overline{g})| : \overline{f}, \overline{g} \in E(H), |\overline{f}(x) - \overline{g}(x)| < 1 \ \forall x \in K \}. \end{split}$$

Possibly, some or both of the values $\alpha_y(\overline{f}), \alpha_y(\overline{g})$ from the definition of a(y, K) could be $\pm \infty$. That's why we use the following agreements:

(*) $\infty + \infty = \infty, \infty - \infty = -\infty + \infty = 0, -\infty - \infty = -\infty$.

Note that $a(y, \emptyset) = \infty$ since φ is surjective.

Proof of Proposition 1

For every $\overline{f} \in E(H)$ denote by f the restriction $\overline{f}|X$. For every $y \in \overline{Y}$ there is a map $\alpha_y : E(H) \to \overline{\mathbb{R}}, \ \alpha_y(\overline{f}) = \overline{\varphi(f)}(y)$. Since φ is uniformly continuous, so is each $\alpha_y|E_p(X), \ y \in Y$.

Suppose $H = \bigcup_k H_k$ is the union of an increasing sequence $\{H_k\}$ of compact sets.

We use the idea of supports introduced by Gul'ko and the extension of that notion introduced by Mikolaj Krupski. For every $y \in \overline{Y}$ and every $p, k \in \mathbb{N}$ we define the families

$$\begin{split} \mathcal{A}^k(y) &= \{K \subset H_k : K \text{ is closed and } a(y,K) < \infty \} \text{ and } \\ \mathcal{A}^k_p(y) &= \{K \subset H_k : K \text{ is closed and } a(y,K) \leq p \}, \text{ where } \\ a(y,K) &= \sup\{|\alpha_y(\overline{f}) - \alpha_y(\overline{g})| : \overline{f}, \overline{g} \in E(H), |\overline{f}(x) - \overline{g}(x)| < 1 \ \forall x \in K \}. \end{split}$$

Possibly, some or both of the values $\alpha_y(\overline{f})$, $\alpha_y(\overline{g})$ from the definition of a(y,K) could be $\pm\infty$. That's why we use the following agreements:

(*) $\infty + \infty = \infty, \infty - \infty = -\infty + \infty = 0, -\infty - \infty = -\infty.$

Note that $a(y, \emptyset) = \infty$ since φ is surjective.

Proof of Proposition 1

For every $\overline{f} \in E(H)$ denote by f the restriction $\overline{f}|X$. For every $y \in \overline{Y}$ there is a map $\alpha_y : E(H) \to \overline{\mathbb{R}}$, $\alpha_y(\overline{f}) = \overline{\varphi(f)}(y)$. Since φ is uniformly continuous, so is each $\alpha_y|E_p(X)$, $y \in Y$.

Suppose $H = \bigcup_k H_k$ is the union of an increasing sequence $\{H_k\}$ of compact sets.

We use the idea of supports introduced by Gul'ko and the extension of that notion introduced by Mikolaj Krupski. For every $y \in \overline{Y}$ and every $p, k \in \mathbb{N}$ we define the families

$$\begin{array}{l} \mathcal{A}^k(y) = \{K \subset H_k : K \text{ is closed and } a(y,K) < \infty\} \text{ and } \\ \mathcal{A}^k_p(y) = \{K \subset H_k : K \text{ is closed and } a(y,K) \leq p\}, \text{ where } \\ a(y,K) = \sup\{|\alpha_y(\overline{f}) - \alpha_y(\overline{g})| : \overline{f}, \overline{g} \in E(H), |\overline{f}(x) - \overline{g}(x)| < 1 \ \forall x \in K\}. \end{array}$$

Possibly, some or both of the values $\alpha_y(\overline{f}), \alpha_y(\overline{g})$ from the definition of a(y, K) could be $\pm \infty$. That's why we use the following agreements:

(*)
$$\infty + \infty = \infty, \infty - \infty = -\infty + \infty = 0, -\infty - \infty = -\infty.$$

Note that $a(y, \emptyset) = \infty$ since φ is surjective.

- (1) For every $y \in Y$ there is $p, k \in \mathbb{N}$ such that $\mathcal{A}_p^k(y)$ contains a finite nonempty subset of X.
- (2) Each set $Y_p^k = \{ y \in \overline{Y} : \mathcal{A}_p^k(y) \neq \emptyset \}$ is a closed subset of \overline{Y} .
- (3) Each set $Y_{p,q}^k = \{y \in Y_p^k : \exists K \in \mathcal{A}_p^k(y) \text{ with } |K| \leq q\}$ is closed in Y_p^k . For every k let $Y_k = \bigcup_{p,q} Y_{p,q}^k$. Obviously, $Y_k \subset \{y \in \overline{Y} : \mathcal{A}^k(y) \neq \varnothing\}$. Since $H_k \subset H_{k+1}$ for all k, the sequence $\{Y_k\}$ is increasing. It may happen that $Y_k = \varnothing$ for some k, but (1) implies that $Y \subset \bigcup_k Y_k$.
- (4) For every $y \in Y_k$ the family $A^k(y)$ is closed under finite intersections and $a(y, K_1 \cap K_2) \le a(y, K_1) + a(y, K_2)$ for all $K_1, K_2 \in A^k(y)$.
- (5) For every $y \in Y_k$ the set $K(y, k) = \bigcap A^k(y)$ is a nonempty finite subset of H_k with $K(y, k) \in A^k(y)$. Moreover, if $y \in Y$ then there exists k such that $y \in Y_k$ and $K(y, k) \subset X$.
- (6) For every k we define $M^k(p,1) = Y_{p,1}^k$ and $M^k(p,q) = Y_{p,q}^k \backslash Y_{2p,q-1}^k$ if $q \ge 2$. Then $Y_k = \bigcup \{M^k(p,q) : p,q=1,2,..\}$ and for every $y \in M^k(p,q)$ there exists a unique set $K_{kp}(y) \in \mathcal{A}^k(y)$ of cardinality q such that $a(y,K_{kp}(y)) \le p$.

- (1) For every $y \in Y$ there is $p, k \in \mathbb{N}$ such that $\mathcal{A}_p^k(y)$ contains a finite nonempty subset of X.
- (2) Each set $Y_p^k = \{ y \in \overline{Y} : \mathcal{A}_p^k(y) \neq \emptyset \}$ is a closed subset of \overline{Y} .
- (3) Each set $Y_{p,q}^k = \{y \in Y_p^k : \exists K \in \mathcal{A}_p^k(y) \text{ with } |K| \leq q\}$ is closed in Y_p^k . For every k let $Y_k = \bigcup_{p,q} Y_{p,q}^k$. Obviously, $Y_k \subset \{y \in \overline{Y} : \mathcal{A}^k(y) \neq \varnothing\}$. Since $H_k \subset H_{k+1}$ for all k, the sequence $\{Y_k\}$ is increasing. It may happen that $Y_k = \varnothing$ for some k, but (1) implies that $Y \subset \bigcup_k Y_k$.
- (4) For every $y \in Y_k$ the family $A^k(y)$ is closed under finite intersections and $a(y, K_1 \cap K_2) \le a(y, K_1) + a(y, K_2)$ for all $K_1, K_2 \in A^k(y)$.
- (5) For every $y \in Y_k$ the set $K(y, k) = \bigcap A^k(y)$ is a nonempty finite subset of H_k with $K(y, k) \in A^k(y)$. Moreover, if $y \in Y$ then there exists k such that $y \in Y_k$ and $K(y, k) \subset X$.
- (6) For every k we define $M^k(p,1) = Y_{p,1}^k$ and $M^k(p,q) = Y_{p,q}^k \backslash Y_{2p,q-1}^k$ if $q \ge 2$. Then $Y_k = \bigcup \{M^k(p,q) : p,q=1,2,..\}$ and for every $y \in M^k(p,q)$ there exists a unique set $K_{kp}(y) \in \mathcal{A}^k(y)$ of cardinality q such that $a(y,K_{kp}(y)) \le p$.

- (1) For every $y \in Y$ there is $p, k \in \mathbb{N}$ such that $\mathcal{A}_p^k(y)$ contains a finite nonempty subset of X.
- (2) Each set $Y_p^k = \{y \in \overline{Y} : \mathcal{A}_p^k(y) \neq \emptyset\}$ is a closed subset of \overline{Y} .
- (3) Each set $Y_{p,q}^k = \{y \in Y_p^k : \exists K \in \mathcal{A}_p^k(y) \text{ with } |K| \leq q\}$ is closed in Y_p^k . For every k let $Y_k = \bigcup_{p,q} Y_{p,q}^k$. Obviously, $Y_k \subset \{y \in \overline{Y} : \mathcal{A}^k(y) \neq \varnothing\}$. Since $H_k \subset H_{k+1}$ for all k, the sequence $\{Y_k\}$ is increasing. It may happen that $Y_k = \varnothing$ for some k, but (1) implies that $Y \subset \bigcup_k Y_k$.
- (4) For every $y \in Y_k$ the family $A^k(y)$ is closed under finite intersections and $a(y, K_1 \cap K_2) \le a(y, K_1) + a(y, K_2)$ for all $K_1, K_2 \in A^k(y)$.
- (5) For every $y \in Y_k$ the set $K(y, k) = \bigcap A^k(y)$ is a nonempty finite subset of H_k with $K(y, k) \in A^k(y)$. Moreover, if $y \in Y$ then there exists k such that $y \in Y_k$ and $K(y, k) \subset X$.
- (6) For every k we define $M^k(p,1) = Y_{p,1}^k$ and $M^k(p,q) = Y_{p,q}^k \setminus Y_{2p,q-1}^k$ if $q \ge 2$. Then $Y_k = \bigcup \{M^k(p,q): p,q=1,2,..\}$ and for every $y \in M^k(p,q)$ there exists a unique set $K_{kp}(y) \in \mathcal{A}^k(y)$ of cardinality q such that $a(y,K_{kp}(y)) \le p$.

- (1) For every $y \in Y$ there is $p, k \in \mathbb{N}$ such that $\mathcal{A}_p^k(y)$ contains a finite nonempty subset of X.
- (2) Each set $Y_p^k = \{y \in \overline{Y} : \mathcal{A}_p^k(y) \neq \emptyset\}$ is a closed subset of \overline{Y} .
- (3) Each set $Y_{p,q}^k = \{y \in Y_p^k : \exists K \in \mathcal{A}_p^k(y) \text{ with } |K| \leq q\}$ is closed in Y_p^k . For every k let $Y_k = \bigcup_{p,q} Y_{p,q}^k$. Obviously, $Y_k \subset \{y \in \overline{Y} : \mathcal{A}^k(y) \neq \varnothing\}$. Since $H_k \subset H_{k+1}$ for all k, the sequence $\{Y_k\}$ is increasing. It may happen that $Y_k = \varnothing$ for some k, but (1) implies that $Y \subset \bigcup_k Y_k$.
- (4) For every $y \in Y_k$ the family $\mathcal{A}^k(y)$ is closed under finite intersections and $a(y, K_1 \cap K_2) \leq a(y, K_1) + a(y, K_2)$ for all $K_1, K_2 \in \mathcal{A}^k(y)$.
- (5) For every $y \in Y_k$ the set $K(y, k) = \bigcap A^k(y)$ is a nonempty finite subset of H_k with $K(y, k) \in A^k(y)$. Moreover, if $y \in Y$ then there exists k such that $y \in Y_k$ and $K(y, k) \subset X$.
- (6) For every k we define $M^k(p,1) = Y_{p,1}^k$ and $M^k(p,q) = Y_{p,q}^k \setminus Y_{2p,q-1}^k$ if $q \ge 2$. Then $Y_k = \bigcup \{M^k(p,q) : p,q=1,2,..\}$ and for every $y \in M^k(p,q)$ there exists a unique set $K_{kp}(y) \in \mathcal{A}^k(y)$ of cardinality q such that $a(y,K_{kp}(y)) < p$.

- (1) For every $y \in Y$ there is $p, k \in \mathbb{N}$ such that $\mathcal{A}_p^k(y)$ contains a finite nonempty subset of X.
- (2) Each set $Y_p^k = \{ y \in \overline{Y} : \mathcal{A}_p^k(y) \neq \emptyset \}$ is a closed subset of \overline{Y} .
- (3) Each set $Y_{p,q}^k = \{y \in Y_p^k : \exists K \in \mathcal{A}_p^k(y) \text{ with } |K| \leq q\}$ is closed in Y_p^k . For every k let $Y_k = \bigcup_{p,q} Y_{p,q}^k$. Obviously, $Y_k \subset \{y \in \overline{Y} : \mathcal{A}^k(y) \neq \varnothing\}$. Since $H_k \subset H_{k+1}$ for all k, the sequence $\{Y_k\}$ is increasing. It may happen that $Y_k = \varnothing$ for some k, but (1) implies that $Y \subset \bigcup_k Y_k$.
- (4) For every y ∈ Y_k the family A^k(y) is closed under finite intersections and a(y, K₁ ∩ K₂) ≤ a(y, K₁) + a(y, K₂) for all K₁, K₂ ∈ A^k(y).
- (5) For every $y \in Y_k$ the set $K(y, k) = \bigcap A^k(y)$ is a nonempty finite subset of H_k with $K(y, k) \in A^k(y)$. Moreover, if $y \in Y$ then there exists k such that $y \in Y_k$ and $K(y, k) \subset X$.
- (6) For every k we define $M^k(p,1) = Y_{p,1}^k$ and $M^k(p,q) = Y_{p,q}^k \backslash Y_{2p,q-1}^k$ if $q \ge 2$. Then $Y_k = \bigcup \{M^k(p,q) : p,q=1,2,..\}$ and for every $y \in M^k(p,q)$ there exists a unique set $K_{kp}(y) \in \mathcal{A}^k(y)$ of cardinality q such that $a(y,K_{kp}(y)) \le p$.

- (1) For every $y \in Y$ there is $p, k \in \mathbb{N}$ such that $\mathcal{A}_p^k(y)$ contains a finite nonempty subset of X.
- (2) Each set $Y_p^k = \{ y \in \overline{Y} : \mathcal{A}_p^k(y) \neq \emptyset \}$ is a closed subset of \overline{Y} .
- (3) Each set $Y_{p,q}^k = \{y \in Y_p^k : \exists K \in \mathcal{A}_p^k(y) \text{ with } |K| \leq q\}$ is closed in Y_p^k . For every k let $Y_k = \bigcup_{p,q} Y_{p,q}^k$. Obviously, $Y_k \subset \{y \in \overline{Y} : \mathcal{A}^k(y) \neq \varnothing\}$. Since $H_k \subset H_{k+1}$ for all k, the sequence $\{Y_k\}$ is increasing. It may happen that $Y_k = \varnothing$ for some k, but (1) implies that $Y \subset \bigcup_k Y_k$.
- (4) For every $y \in Y_k$ the family $A^k(y)$ is closed under finite intersections and $a(y, K_1 \cap K_2) \le a(y, K_1) + a(y, K_2)$ for all $K_1, K_2 \in A^k(y)$.
- (5) For every $y \in Y_k$ the set $K(y, k) = \bigcap A^k(y)$ is a nonempty finite subset of H_k with $K(y, k) \in A^k(y)$. Moreover, if $y \in Y$ then there exists k such that $y \in Y_k$ and $K(y, k) \subset X$.
- (6) For every k we define $M^k(p,1)=Y_{p,1}^k$ and $M^k(p,q)=Y_{p,q}^k\setminus Y_{2p,q-1}^k$ if $q\geq 2$. Then $Y_k=\bigcup\{M^k(p,q):p,q=1,2,..\}$ and for every $y\in M^k(p,q)$ there exists a unique set $K_{kp}(y)\in \mathcal{A}^k(y)$ of cardinality q such that $a(y,K_{kp}(y))\leq p$.

- (7) For every q let $[H_k]^q$ denote the set of all q-points subsets of H_k endowed with the Vietoris topology. The map $\Phi_{kpq}: M^k(p,q) \to [H_k]^q, \Phi_{kpq}(y) = K_{kp}(y)$, is continuous.
- $Y \subset \bigcup \{F_n^k(p,q) : n, p, q, k = 1, 2, ..\}$. The fibers of each map

- (7) For every q let $[H_k]^q$ denote the set of all q-points subsets of H_k endowed with the Vietoris topology. The map $\Phi_{kpq}: M^k(p,q) \to [H_k]^q, \ \Phi_{kpq}(y) = \underbrace{K_{kp}(y)}_{kp}$, is continuous.
- (8) Since $Y_{p,q}^k$ are compact subsets of \overline{Y} , each $M^k(p,q)$ is a countable union of compact subsets $\{F_n^k(p,q):n=1,2,..\}$ of \overline{Y} . So, by (6), $Y_k=\bigcup\{F_n^k(p,q):n,p,q=1,2,..\}$. According to (7), all maps $\Phi_{kpq}^n=\Phi_{kpq}|F_n^k(p,q):F_n^k(p,q)\to [H_k]^q$ are continuous. Moreover, since $Y\subset\bigcup_k Y_k$, $Y\subset\bigcup\{F_n^k(p,q):n,p,q,k=1,2,..\}$. The fibers of each map

 $\Phi_{kpq}^n: F_n^k(p,q) \to [H_k]^q$ are finite.

We can complete the proof of Proposition 1. Suppose H has a property \mathcal{P} satisfying conditions (a) - (d). Then so does H_k^q for each k, q because H_k is closed in H. But $[H_k]^q$ is homeomorphic to the open subset $W_q = \{(x_1, ..., x_q) \in H_k^q : x_i \neq x_j\}$ of H_k^q . So, W_q has the property \mathcal{P} as a countable union of closed subsets of H_k^q . Hence, each set $\Phi_{kpq}^n(F_n^k(p,q))$ also has the property \mathcal{P} because it is a compact subset of W_q . Finally, since the maps $\Phi_{kpq}^n: F_n^k(p,q) \to \Phi_{kpq}^n(F_n^k(p,q))$ are perfect and have finite fibers, each $F_n^k(p,q)$ has the property \mathcal{P} . Therefore, $Y_{\infty} = \prod_{i=1}^{n} \{F_n^k(p,q): p, p, q, k=1,2,...\}$ has the property \mathcal{P} .

- (7) For every q let $[H_k]^q$ denote the set of all q-points subsets of H_k endowed with the Vietoris topology. The map $\Phi_{kpq}: M^k(p,q) \to [H_k]^q, \Phi_{kpq}(y) = K_{kp}(y)$, is continuous.
- (8) Since $Y_{p,q}^k$ are compact subsets of \overline{Y} , each $M^k(p,q)$ is a countable union of compact subsets $\{F_n^k(p,q): n=1,2,..\}$ of \overline{Y} . So, by (6), $Y_k = \bigcup \{F_n^k(p,q) : n, p, q = 1, 2, ..\}$. According to (7), all maps $\Phi_{kpq}^n = \Phi_{kpq} | F_n^k(p,q) : F_n^k(p,q) \to [H_k]^q$ are continuous. Moreover, since $Y \subset \bigcup_k Y_k$, $Y \subset \bigcup \{F_n^k(p,q) : n, p, q, k = 1, 2, ..\}$. The fibers of each map

 $\Phi_{kpq}^n: F_n^k(p,q) \to [H_k]^q$ are finite.

We can complete the proof of Proposition 1. Suppose H has a property \mathcal{P} satisfying conditions (a) - (d). Then so does H^q_{ν} for each k, q because H_k is closed in H. But $[H_k]^q$ is homeomorphic to the open subset $W_q = \{(x_1,..,x_q) \in H_k^q : x_i \neq x_i\}$ of H_k^q . So, W_q has the property \mathcal{P} as a countable union of closed subsets of H^q_{k} . Hence, each set $\Phi_{kpq}^n(F_n^k(p,q))$ also has the property \mathcal{P} because it is a compact subset of W_q . Finally, since the maps $\Phi_{kpq}^n:F_n^k(p,q)\to\Phi_{kpq}^n(F_n^k(p,q))$ are perfect and have finite fibers, each $F_n^k(p,q)$ has the property \mathcal{P} . Therefore, $Y_{\infty} = \bigcup \{F_n^k(p,q) : n, p, q, k = 1, 2, ..\}$ has the property \mathcal{P} .

We can finish the proof of Theorem 3. Let $T:D_p(X)\to D_p(Y)$ be a uniformly continuous inversely bounded surjection. It suffices to show that for every map $h:Y\to Z$, where Z is separable metric space, there are maps $h_0:Y\to Y_0$ and $g:Y_0\to Z$ such that $\dim Y_0=0$ and $h=g\circ h_0$ (when $h=g\circ h_0$ for some map g, we write $h_0\succ h$). We fix such h and let $\overline{h}:\beta Y\to \overline{Z}$ be a continuous extension of h, where \overline{Z} is a compact metric space. For every $\Psi\subset C(\beta X)$ we denote by $\triangle\Psi$ the diagonal product of all functions from Ψ . Clearly, $\triangle\Psi(\beta X)$ is a subset of the product $\prod\{\mathbb{R}_f:f\in\Psi\}$, and let $\pi_f:\Delta\Psi(\beta X)\to\mathbb{R}_f$ be the projection. Following Gul'ko, we call a set $\Psi\subset C(\beta X)$ admissible if the family $\pi(\Psi)=\{\pi_f:f\in\Psi\}$ is a QS-algebra on $\triangle\Psi(\beta X)$.

We construct by induction two sequences $\{\Psi_n\}_{n\geq 1}\subset C(\beta X)$ and $\{\Phi_n\}_{n\geq 1}\subset C(\beta Y,\overline{\mathbb{R}})$ of countable sets, countable QS-algebras Λ_n on $Y'_n=(\triangle\Phi'_n)(\beta Y)$, where $\Phi'_n=\{\overline{T(f)}:\overline{f}\in\Psi_n\}$, satisfying the following conditions for every $n\geq 1$. Here, $\overline{T(f)}:\beta Y\to\overline{\mathbb{R}}$ is the extension of T(f).

We can finish the proof of Theorem 3. Let $T:D_p(X)\to D_p(Y)$ be a uniformly continuous inversely bounded surjection. It suffices to show that for every map $h:Y\to Z$, where Z is separable metric space, there are maps $h_0:Y\to Y_0$ and $g:Y_0\to Z$ such that $\dim Y_0=0$ and $h=g\circ h_0$ (when $h=g\circ h_0$ for some map g, we write $h_0\succ h$). We fix such h and let $\overline{h}:\beta Y\to \overline{Z}$ be a continuous extension of h, where \overline{Z} is a compact metric space. For every $\Psi\subset C(\beta X)$ we denote by $\triangle\Psi$ the diagonal product of all functions from Ψ . Clearly, $\triangle\Psi(\beta X)$ is a subset of the product $\prod\{\mathbb{R}_f:f\in\Psi\}$, and let $\pi_f:\Delta\Psi(\beta X)\to\mathbb{R}_f$ be the projection. Following Gul'ko, we call a set $\Psi\subset C(\beta X)$ admissible if the family $\pi(\Psi)=\{\pi_f:f\in\Psi\}$ is a QS-algebra on $\triangle\Psi(\beta X)$.

We construct by induction two sequences $\{\Psi_n\}_{n\geq 1}\subset C(\beta X)$ and $\{\Phi_n\}_{n\geq 1}\subset C(\beta Y,\overline{\mathbb{R}})$ of countable sets, countable QS-algebras Λ_n on $Y'_n=(\triangle \Phi'_n)(\beta Y)$, where $\Phi'_n=\{\overline{T(f)}:\overline{f}\in \Psi_n\}$, satisfying the following conditions for every $n\geq 1$. Here, $\overline{T(f)}:\beta Y\to \overline{\mathbb{R}}$ is the extension of T(f).

- (3.5) $\Phi_1 \subset C(\beta Y)$ is admissible and $\triangle \Phi_1 \succ \overline{h}$;
- $(3.6) \ \Phi_n \subset \Phi_{n+1} = \Phi'_n \cup \{\lambda \circ (\triangle \Phi'_n) : \lambda \in \Lambda_n\};$
- (3.7) Each Ψ_n is admissible, $\dim(\triangle \Psi_n)(\beta X) = 0$ and $\Psi_n \subset \Psi_{n+1}$;
- (3.8) Λ_{n+1} contains $\{\lambda \circ \delta_n : \lambda \in \Lambda_n\}$, where $\delta_n : Y'_{n+1} \to Y'_n$ is the surjective map generated by the inclusion $\Phi'_n \subset \Phi'_{n+1}$;
- (3.9) For every $\overline{g} \in \Phi_n \cap C(\beta Y)$ there is $\overline{f}_g \in \Psi_n$ with $||f_g|| \le c.||g||$ and $T(f_g) = g$.

Let $\Psi = \bigcup_n \Psi_n$, $X_0 = (\triangle \Psi)(X)$ and $\overline{X}_0 = (\triangle \Psi)(\beta X)$. Similarly, let $\Phi = \bigcup_n \Phi_n$, $Y_0 = h_0(Y)$ and $\overline{Y}_0 = (\triangle \Phi)(\beta Y)$, where $h_0 = (\triangle \Phi)|Y$. Both Ψ and Φ are countable and Ψ is an admissible subset of $C(\beta X)$, see (3.4). Hence, the family $E(\overline{X}_0) = \{\pi_{\overline{t}} : \overline{t} \in \Psi\}$ is a countable QS-algebra on \overline{X}_0 . Moreover, $\dim \overline{X}_0 = 0$ and there is a c-good uniformly continuous surjection $\varphi : E_p(X_0) \to E_p(Y_0)$ satisfying the conditions from Proposition 1. Hence, $\dim Y_0 = 0$.

(3.5) $\Phi_1 \subset C(\beta Y)$ is admissible and $\triangle \Phi_1 \succ \overline{h}$;

- $(3.6) \ \Phi_n \subset \Phi_{n+1} = \Phi'_n \cup \{\lambda \circ (\triangle \Phi'_n) : \lambda \in \Lambda_n\};$
- (3.7) Each Ψ_n is admissible, $\dim(\triangle \Psi_n)(\beta X) = 0$ and $\Psi_n \subset \Psi_{n+1}$;
- (3.8) Λ_{n+1} contains $\{\lambda \circ \delta_n : \lambda \in \Lambda_n\}$, where $\delta_n : Y'_{n+1} \to Y'_n$ is the surjective map generated by the inclusion $\Phi'_n \subset \Phi'_{n+1}$;
- (3.9) For every $\overline{g} \in \Phi_n \cap C(\beta Y)$ there is $\overline{f}_g \in \Psi_n$ with $||f_g|| \le c.||g||$ and $T(f_g) = g$.

Let $\Psi = \bigcup_n \Psi_n$, $X_0 = (\triangle \Psi)(X)$ and $\overline{X}_0 = (\triangle \Psi)(\beta X)$. Similarly, let $\Phi = \bigcup_n \Phi_n$, $Y_0 = h_0(Y)$ and $\overline{Y}_0 = (\triangle \Phi)(\beta Y)$, where $h_0 = (\triangle \Phi)|Y$. Both Ψ and Φ are countable and Ψ is an admissible subset of $C(\beta X)$, see (3.4). Hence, the family $E(\overline{X}_0) = \{\pi_{\overline{t}} : \overline{t} \in \Psi\}$ is a countable QS-algebra on \overline{X}_0 . Moreover, $\dim \overline{X}_0 = 0$ and there is a c-good uniformly continuous surjection $\varphi : E_p(X_0) \to E_p(Y_0)$ satisfying the conditions from Proposition 1. Hence, $\dim Y_0 = 0$.

- (3.5) $\Phi_1 \subset C(\beta Y)$ is admissible and $\triangle \Phi_1 \succ \overline{h}$;
- $(3.6) \ \Phi_n \subset \Phi_{n+1} = \Phi'_n \cup \{\lambda \circ (\triangle \Phi'_n) : \lambda \in \Lambda_n\};$
- (3.7) Each Ψ_n is admissible, $\dim(\triangle \Psi_n)(\beta X) = 0$ and $\Psi_n \subset \Psi_{n+1}$;
- (3.8) Λ_{n+1} contains $\{\lambda \circ \delta_n : \lambda \in \Lambda_n\}$, where $\delta_n : Y'_{n+1} \to Y'_n$ is the surjective map generated by the inclusion $\Phi'_n \subset \Phi'_{n+1}$;
- (3.9) For every $\overline{g} \in \Phi_n \cap C(\beta Y)$ there is $\overline{f}_g \in \Psi_n$ with $||f_g|| \le c.||g||$ and $T(f_g) = g$.

Let $\Psi = \bigcup_n \Psi_n$, $X_0 = (\triangle \Psi)(X)$ and $\overline{X}_0 = (\triangle \Psi)(\beta X)$. Similarly, let $\Phi = \bigcup_n \Phi_n$, $Y_0 = h_0(Y)$ and $\overline{Y}_0 = (\triangle \Phi)(\beta Y)$, where $h_0 = (\triangle \Phi)|Y$. Both Ψ and Φ are countable and Ψ is an admissible subset of $C(\beta X)$, see (3.4). Hence, the family $E(\overline{X}_0) = \{\pi_{\overline{t}} : \overline{t} \in \Psi\}$ is a countable QS-algebra on \overline{X}_0 . Moreover, $\dim \overline{X}_0 = 0$ and there is a c-good uniformly continuous surjection $\varphi : E_p(X_0) \to E_p(Y_0)$ satisfying the conditions from Proposition 1. Hence, $\dim Y_0 = 0$.

- (3.5) $\Phi_1 \subset C(\beta Y)$ is admissible and $\triangle \Phi_1 \succ \overline{h}$;
- $(3.6) \ \Phi_n \subset \Phi_{n+1} = \Phi'_n \cup \{\lambda \circ (\triangle \Phi'_n) : \lambda \in \Lambda_n\};$
- (3.7) Each Ψ_n is admissible, $\dim(\triangle \Psi_n)(\beta X) = 0$ and $\Psi_n \subset \Psi_{n+1}$;
- (3.8) Λ_{n+1} contains $\{\lambda \circ \delta_n : \lambda \in \Lambda_n\}$, where $\delta_n : Y'_{n+1} \to Y'_n$ is the surjective map generated by the inclusion $\Phi'_n \subset \Phi'_{n+1}$;
- (3.9) For every $\overline{g} \in \Phi_n \cap C(\beta Y)$ there is $\overline{f}_g \in \Psi_n$ with $||f_g|| \le c.||g||$ and $T(f_g) = g$.

Let $\Psi = \bigcup_n \Psi_n$, $X_0 = (\triangle \Psi)(X)$ and $\overline{X}_0 = (\triangle \Psi)(\beta X)$. Similarly, let $\Phi = \bigcup_n \Phi_n$, $Y_0 = h_0(Y)$ and $\overline{Y}_0 = (\triangle \Phi)(\beta Y)$, where $h_0 = (\triangle \Phi)|Y$. Both Ψ and Φ are countable and Ψ is an admissible subset of $C(\beta X)$, see (3.4). Hence, the family $E(\overline{X}_0) = \{\pi_{\overline{f}} : \overline{f} \in \Psi\}$ is a countable QS-algebra on \overline{X}_0 . Moreover, $\dim \overline{X}_0 = 0$ and there is a c-good uniformly continuous surjection $\varphi : E_p(X_0) \to E_p(Y_0)$ satisfying the conditions from Proposition 1. Hence, $\dim Y_0 = 0$.

- (3.5) $\Phi_1 \subset C(\beta Y)$ is admissible and $\triangle \Phi_1 \succ \overline{h}$;
- $(3.6) \ \Phi_n \subset \Phi_{n+1} = \Phi'_n \cup \{\lambda \circ (\triangle \Phi'_n) : \lambda \in \Lambda_n\};$
- (3.7) Each Ψ_n is admissible, $\dim(\triangle \Psi_n)(\beta X) = 0$ and $\Psi_n \subset \Psi_{n+1}$;
- (3.8) Λ_{n+1} contains $\{\lambda \circ \delta_n : \lambda \in \Lambda_n\}$, where $\delta_n : Y'_{n+1} \to Y'_n$ is the surjective map generated by the inclusion $\Phi'_n \subset \Phi'_{n+1}$;
- (3.9) For every $\overline{g} \in \Phi_n \cap C(\beta Y)$ there is $\overline{f}_g \in \Psi_n$ with $||f_g|| \le c.||g||$ and $T(f_g) = g$.

Let $\Psi = \bigcup_n \Psi_n$, $X_0 = (\triangle \Psi)(X)$ and $\overline{X}_0 = (\triangle \Psi)(\beta X)$. Similarly, let $\Phi = \bigcup_n \Phi_n$, $Y_0 = h_0(Y)$ and $\overline{Y}_0 = (\triangle \Phi)(\beta Y)$, where $h_0 = (\triangle \Phi)|Y$. Both Ψ and Φ are countable and Ψ is an admissible subset of $C(\beta X)$, see (3.4). Hence, the family $E(\overline{X}_0) = \{\pi_{\overline{f}} : \overline{f} \in \Psi\}$ is a countable QS-algebra on \overline{X}_0 . Moreover, $\dim \overline{X}_0 = 0$ and there is a c-good uniformly continuous surjection $\varphi : E_p(X_0) \to E_p(Y_0)$ satisfying the conditions from Proposition 1. Hence, $\dim Y_0 = 0$.

- (3.5) $\Phi_1 \subset C(\beta Y)$ is admissible and $\triangle \Phi_1 \succ \overline{h}$;
- $(3.6) \ \Phi_n \subset \Phi_{n+1} = \Phi'_n \cup \{\lambda \circ (\triangle \Phi'_n) : \lambda \in \Lambda_n\};$
- (3.7) Each Ψ_n is admissible, $\dim(\triangle \Psi_n)(\beta X) = 0$ and $\Psi_n \subset \Psi_{n+1}$;
- (3.8) Λ_{n+1} contains $\{\lambda \circ \delta_n : \lambda \in \Lambda_n\}$, where $\delta_n : Y'_{n+1} \to Y'_n$ is the surjective map generated by the inclusion $\Phi'_n \subset \Phi'_{n+1}$;
- (3.9) For every $\overline{g} \in \Phi_n \cap C(\beta Y)$ there is $\overline{f}_g \in \Psi_n$ with $||f_g|| \le c.||g||$ and $T(f_g) = g$.

Let $\Psi = \bigcup_n \Psi_n$, $X_0 = (\triangle \Psi)(X)$ and $\overline{X}_0 = (\triangle \Psi)(\beta X)$. Similarly, let $\Phi = \bigcup_n \Phi_n$, $Y_0 = h_0(Y)$ and $\overline{Y}_0 = (\triangle \Phi)(\beta Y)$, where $h_0 = (\triangle \Phi)|Y$. Both Ψ and Φ are countable and Ψ is an admissible subset of $C(\beta X)$, see (3.4). Hence, the family $E(\overline{X}_0) = \{\pi_{\overline{f}} : \overline{f} \in \Psi\}$ is a countable QS-algebra on \overline{X}_0 . Moreover, $\dim \overline{X}_0 = 0$ and there is a c-good uniformly continuous surjection $\varphi : E_p(X_0) \to E_p(Y_0)$ satisfying the conditions from Proposition 1. Hence, $\dim Y_0 = 0$.

- (3.5) $\Phi_1 \subset C(\beta Y)$ is admissible and $\triangle \Phi_1 \succ \overline{h}$;
- $(3.6) \ \Phi_n \subset \Phi_{n+1} = \Phi'_n \cup \{\lambda \circ (\triangle \Phi'_n) : \lambda \in \Lambda_n\};$
- (3.7) Each Ψ_n is admissible, $\dim(\triangle \Psi_n)(\beta X) = 0$ and $\Psi_n \subset \Psi_{n+1}$;
- (3.8) Λ_{n+1} contains $\{\lambda \circ \delta_n : \lambda \in \Lambda_n\}$, where $\delta_n : Y'_{n+1} \to Y'_n$ is the surjective map generated by the inclusion $\Phi'_n \subset \Phi'_{n+1}$;
- (3.9) For every $\overline{g} \in \Phi_n \cap C(\beta Y)$ there is $\overline{f}_g \in \Psi_n$ with $||f_g|| \le c.||g||$ and $T(f_g) = g$.

Let $\Psi = \bigcup_n \Psi_n$, $X_0 = (\triangle \Psi)(X)$ and $X_0 = (\triangle \Psi)(\beta X)$. Similarly, let $\Phi = \bigcup_n \Phi_n$, $Y_0 = h_0(Y)$ and $\overline{Y}_0 = (\triangle \Phi)(\beta Y)$, where $h_0 = (\triangle \Phi)|Y$. Both Ψ and Φ are countable and Ψ is an admissible subset of $C(\beta X)$, see (3.4). Hence, the family $E(\overline{X}_0) = \{\pi_{\overline{f}} : \overline{f} \in \Psi\}$ is a countable QS-algebra on \overline{X}_0 . Moreover, dim $\overline{X}_0 = 0$ and there is a c-good uniformly continuous surjection $\varphi : E_p(X_0) \to E_p(Y_0)$ satisfying the conditions from Proposition 1. Hence, dim $Y_0 = 0$.

