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It is my pleasure to present a talk at the conference dedicated to Prof.
Sergey Gul’ko. | have rectly the opportunity to study Gul’ko’s paper
about preservation of the dimension by uniform homeomorphisms
between Cp-spaces. The technique which was developed by Gul’ko
in that paper, and specially the so called Gul’ko supports’ are one of
the most interesting and helpful achievemnts in Cp-theory.
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The C,-theory was introduced by Arhangel’skii and his students
(recall that for a Tychonoff space X the set of all continuous functions
on X with the pointwise convergence topology is denoted by Cp(X)).
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The C,-theory was introduced by Arhangel’skii and his students
(recall that for a Tychonoff space X the set of all continuous functions
on X with the pointwise convergence topology is denoted by Cp(X)).

One of the main directions in Cp-theory is the investigation of
properties P such that if X € P and C,(X) is linearly or uniformly
homeomorphic to Cy(Y), then Y € P. Probably, the best results in
that direction are Pestov’s theorem, stating that if C,(X) and C,(Y)
are linearly homeomorphic, then dim X = dim Y, and Uspenskii’s
theorem that pseudocompactness and compactness are determined
by the uniform structure of Cy-spaces.
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The C,-theory was introduced by Arhangel’skii and his students
(recall that for a Tychonoff space X the set of all continuous functions
on X with the pointwise convergence topology is denoted by Cp(X)).

One of the main directions in Cp-theory is the investigation of
properties P such that if X € P and C,(X) is linearly or uniformly
homeomorphic to Cy(Y), then Y € P. Probably, the best results in
that direction are Pestov’s theorem, stating that if C,(X) and C,(Y)
are linearly homeomorphic, then dim X = dim Y, and Uspenskii’s
theorem that pseudocompactness and compactness are determined
by the uniform structure of Cy-spaces.

Let’s note that if we consider the function spaces with the uniform
convergence, the Pestov’s result is not anymore true. Indeed,
according to classical Milyutin’s theorem if X and Y are uncountable
metric compacta, then their function spaces C(X) and C(Y)
equipped with the sup metric are linearly homeomorphic.
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Pestov’s result was generalized by Gul’ko who proved that
dim X = dim Y providing Cp(X) and Cp(Y) are uniformly
homeomorphic (recall that a map T : Cp(X) — Cp(Y) is uniformly
continuous if for every neighborhood U of Oy there is a nbd V of Ox
such that T(f) — T(g) € U provided f — g € V). )
v
v
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Pestov’s result was generalized by Gul’ko who proved that

dim X = dim Y providing Cp(X) and Cp(Y) are uniformly
homeomorphic (recall that a map T : Cp(X) — Cp(Y) is uniformly
continuous if for every neighborhood U of Oy there is a nbd V of Ox
such that T(f) — T(g) € U provided f — g € V).

Gul’ko’s result motivated the investigation of properties P such that if
X € P and Cp(X) is uniformly homeomorphic to C,(Y), then Y € P.
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Pestov’s result was generalized by Gul’ko who proved that

dim X = dim Y providing Cp(X) and Cp(Y) are uniformly
homeomorphic (recall that a map T : Cp(X) — Cp(Y) is uniformly
continuous if for every neighborhood U of Oy there is a nbd V of Ox
such that T(f) — T(g) € U provided f — g € V).

Gul'ko’s result motivated the investigation of properties P such that if
X € P and Cp(X) is uniformly homeomorphic to C,(Y), then Y € P.

Another direction in the Cp-theory is to investigate properties P such
that if X € P and there is a linear continuous (or uniformly
continuous) surjection T : Cp(X) — Cp(Y), then Y € P. For example,
in the class of metrizable spaces completeness is preserved by linear
continuous surjections (Baars-de Groot-Pelant), while other absolute
Borel classes are preserved by uniformly continuous surjections
(Marciszewski-Pelant). Moreover, absolute Borel classes greater than
2 and all projective classes are preserved by homeomorphisms
between Cy(X) and Cp(Y) when X, Y are metrizable (Marciszewski).

y
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In view of Pestov’s result, Arhangelskii asked if dim Y < dim X
provided there is a continuous linear surjection T : Cy(X) — Cp(Y).
This question was answered negatively by Leiderman-Levin-Pestov
and Leiderman-Morris-Pestov. )
v
v
v
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In view of Pestov’s result, Arhangelskii asked if dim Y < dim X
provided there is a continuous linear surjection T : Cy(X) — Cp(Y).
This question was answered negatively by Leiderman-Levin-Pestov
and Leiderman-Morris-Pestov.

On the other hand, Leiderma-Levin-Pestov proved that the
Arhangelskii question has a positive answer in dimension 0 when X
and Y are metric compacta. The last result was extended for arbitrary
compact spaces by Kawamura-Leiderman.
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In view of Pestov’s result, Arhangelskii asked if dim Y < dim X
provided there is a continuous linear surjection T : Cy(X) — Cp(Y).
This question was answered negatively by Leiderman-Levin-Pestov
and Leiderman-Morris-Pestov.

On the other hand, Leiderma-Levin-Pestov proved that the
Arhangelskii question has a positive answer in dimension 0 when X
and Y are metric compacta. The last result was extended for arbitrary
compact spaces by Kawamura-Leiderman.

Kawamura-Leiderman asked if their result remains true for arbitrary
Tychonoff spaces. This question was the starting point for our
research.
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In view of Pestov’s result, Arhangelskii asked if dim Y < dim X
provided there is a continuous linear surjection T : Cy(X) — Cp(Y).
This question was answered negatively by Leiderman-Levin-Pestov
and Leiderman-Morris-Pestov.

On the other hand, Leiderma-Levin-Pestov proved that the
Arhangelskii question has a positive answer in dimension 0 when X
and Y are metric compacta. The last result was extended for arbitrary
compact spaces by Kawamura-Leiderman.

Kawamura-Leiderman asked if their result remains true for arbitrary
Tychonoff spaces. This question was the starting point for our
research.

In this talk some results providing a positive answer of the
Kawamura-Leiderman question are discussed. We also discuss the
case when there is a uniformly continuous surjection between Cp(X)
and Cp(Y).
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Theorem 1 [Eysen-V]

ain results

If there is a linear continuous surjection T : Cy(X) — Cp(Y), then
dim X = 0 implies dim Y = 0.
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Main results

Theorem 1 [Eysen-V]

If there is a linear continuous surjection T : Cy(X) — Cp(Y), then
dim X = 0 implies dim Y = 0.

We consider properties P of metric spaces such that:
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Main results

Theorem 1 [Eysen-V]

If there is a linear continuous surjection T : Cy(X) — Cp(Y), then
dim X = 0 implies dim Y = 0.

We consider properties P of metric spaces such that:
(a) if X e Pand F C X is closed, then F € P;
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Main results

Theorem 1 [Eysen-V]

If there is a linear continuous surjection T : Cy(X) — Cp(Y), then
dim X = 0 implies dim Y = 0.

We consider properties P of metric spaces such that:
(a) if X e Pand F C X is closed, then F € P;
(b) P is closed under finite products;
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Main results

Theorem 1 [Eysen-V]

If there is a linear continuous surjection T : Cy(X) — Cp(Y), then
dim X = 0 implies dim Y = 0.

We consider properties P of metric spaces such that:
(a) if X e Pand F C X is closed, then F € P;
(b) P is closed under finite products;

(c) if X is a countable union of closed subsets each having the
property P, then X € P;
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Main results

Theorem 1 [Eysen-V]

If there is a linear continuous surjection T : Cy(X) — Cp(Y), then
dim X = 0 implies dim Y = 0.

We consider properties P of metric spaces such that:
(a) if X e Pand F C X is closed, then F € P;
(b) P is closed under finite products;

(c) if X is a countable union of closed subsets each having the
property P, then X € P;

(d) if f: X — Y is a perfect map with countable fibers and Y € P,
then X € P;
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Main results

Theorem 1 [Eysen-V]

If there is a linear continuous surjection T : Cy(X) — Cp(Y), then
dim X = 0 implies dim Y = 0.

We consider properties P of metric spaces such that:
(a) if X e Pand F C X is closed, then F € P;
(b) P is closed under finite products;

(c) if X is a countable union of closed subsets each having the
property P, then X € P;

(d) if f: X — Y is a perfect map with countable fibers and Y € P,
then X € P;

(e) if XePand F C X,then F € P.
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Main results

Theorem 1 [Eysen-V]

If there is a linear continuous surjection T : Cy(X) — Cp(Y), then
dim X = 0 implies dim Y = 0.

We consider properties P of metric spaces such that:
(a) if X e Pand F C X is closed, then F € P;
(b) P is closed under finite products;

(c) if X is a countable union of closed subsets each having the
property P, then X € P;

(d) if f: X — Y is a perfect map with countable fibers and Y € P,
then X € P;

(e) if XePand F C X,then F € P.

For example, 0-dimensionality, countable-dimensionality and strongly
countable-dimensionality satisfy conditions (a) — (d), while
0-dimensionality and countable-dimensionality satisfy also conditions

(b) — (e).
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In the class of metrizable spaces, Theorem 1 has a stronger
analogue:

Theorem 2 [Eysen-Leiderman-V]

Let T : Dy(X) — Dp(Y) be alinear continuous surjection and P be a
topological property satisfying either conditions (a) — (d) or (b) — (e).
If X is a metric space and Y is perfectly normal, then Y has the
property P provided X € P.

Here Dp(X) denote either Cp(X) or C5(X), where C;(X) is the set of
bounded continuous functions with the pointwise topology.
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In the class of metrizable spaces, Theorem 1 has a stronger
analogue:

Theorem 2 [Eysen-Leiderman-V]

Let T : Dy(X) — Dp(Y) be alinear continuous surjection and P be a
topological property satisfying either conditions (a) — (d) or (b) — (e).
If X is a metric space and Y is perfectly normal, then Y has the
property P provided X € P.

Here Dp(X) denote either Cp(X) or C;(X), where C5(X) is the set of
bounded continuous functions with the pointwise topology.

We say that a surjection T : Dp(X) — Dp(Y) is inversely bounded if
for every norm bounded sequence {g,} € C*(Y) there is a norm
bounded sequence {f,} c C*(X) with T(f,) = g, for each n. The
following notion was introduced by Gartside-Feng: A map

T : Dp(X) — Dp(Y) is c-good if for every g € C*(Y) there is

f e C*(X) with ||f|| < c.||g||- Note that every linearly continuous
surjection T : C5(X) — C(Y) is inversely bounded, as wee as every
c-good map.
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Theorem 3 [Eysen-V]

Let T : Dy(X) — Dp(Y) be a c-good uniformly continuous surjection.
Then Y is 0-dimensional provided so is X.

Theorem 3 has a stronger version in case X is metrizable and Y is
perfectly normal:

In particular, Theorem 3 is true if P is countable-dimensional or
strongly countable-dimensional.
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Theorem 3 [Eysen-V]

Let T : Dy(X) — Dp(Y) be a c-good uniformly continuous surjection.
Then Y is 0-dimensional provided so is X.

.

Corollary [Eysen-V]

Let T : C5(X) — Dp(Y) be a linear continuous surjection. Then Y'is
0-dimensional provided so is X.

A

Theorem 3 has a stronger version in case X is metrizable and Y is
perfectly normal:

In particular, Theorem 3 is true if P is countable-dimensional or
strongly countable-dimensional.
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Theorem 3 [Eysen-V]

Let T : Dy(X) — Dp(Y) be a c-good uniformly continuous surjection.
Then Y is 0-dimensional provided so is X.

.

Corollary [Eysen-V]

Let T : C5(X) — Dp(Y) be a linear continuous surjection. Then Y'is
0-dimensional provided so is X.

A

Theorem 3 has a stronger version in case X is metrizable and Y is
perfectly normal:

Theorem 4 [Eysen-Leiderman-V]

Let T : Dy(X) — Dp(Y) be an inversely bounded uniformly
continuous surjection and P be a topological property satisfying
either conditions (a) — (d) or (b) — (e), where X is metrizable and Y
is perfectly normal. Then Y has the property P provided X € P.

In particular, Theorem 3 is true if P is countable-dimensional or
strongly countable-dimensional.
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Proof of Theorem 3

A subset E(X) c C(X) is called a QS-algebra (Gul’ko) if:

(i) f+ g, f-gand \.f belong to E(X) provided f,g € E(X) and \is a
rational number;

(i) For every x € X there is a its nbd U there exists f € E(X) such
that f(x) = 1 and f(X\U) = 0.

Following Gul’ko, the proof is reduced to the following proposition:
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Proof of Theorem 3

A subset E(X) c C(X) is called a QS-algebra (Gul’ko) if:

(i) f+ g, f-gand \.f belong to E(X) provided f,g € E(X) and \is a
rational number;

(i) For every x € X there is a its nbd U there exists f € E(X) such
that f(x) = 1 and f(X\U) = 0.

Following Gul’ko, the proof is reduced to the following proposition:

Proposition 1

Let X and Y be metric compactifications of X and Y, and H ¢ X be a
o-compact space containing X. Suppose E(H) is a QS-algebra on H,
E(X) = {f|X : f € E(H)} and E(Y) C C(Y) is a family such that
every g € E(Y) is extendabletoamapg: Y — R and

E(Y)={g: g < E(Y)} containing a QS-algebra I on Y. Let also

@ Ep(X) — Ep(Y) be an uniformly continuous surjection which is
inversely bounded.

If H has a property P satisfying conditions (a) — (d), then there exists
a o-compact set Y., C Y containing Y with Y., € P.
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Proof of Proposition 1

For every f € E(H) denote by f the restriction f|X. For every y € Y
there is a map ay : E(H) — R, ay(f) = ¢(f)(y). Since  is uniformly
continuous, so is each ay|Ey(X), y € Y.

Suppose H = |J, Hk is the union of an increasing sequence {H} of
compact sets.

We use the idea of supports introduced by Gul’ko and the extension
of that notion introduced by Mikolaj Krupski. For every y € Y and
every p, k € N we define the families

AK(y) = {K C Hx : K is closed and a(y, K) < oo} and

AK(y) = {K C Hx : K is closed and a(y, K) < p}, where

aly, K) = sup{lay (7) — ay(@)| : £.G € E(H), [f(x) ~g(x)| < 1 ¥x € K}.
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Proof of Proposition 1

For every f € E(H) denote by f the restriction f|X. For every y € Y
there is a map ay : E(H) — R, ay(f) = ¢(f)(y). Since  is uniformly
continuous, so is each ay|Ey(X), y € Y.

Suppose H = |J, Hk is the union of an increasing sequence {H} of
compact sets.

We use the idea of supports introduced by Gul’ko and the extension
of that notion introduced by Mikolaj Krupski. For every y € Y and
every p, k € N we define the families

AK(y) = {K C Hx : K is closed and a(y, K) < oo} and

AK(y) = {K C Hx : K is closed and a(y, K) < p}, where

a(y, K) = sup{lay(f) —ay(9)| : f,g € E(H), [f(x) —g(x)| < 1Vx € K}.

Possibly, some or both of the values «,(f), a,(g) from the definition of
a(y, K) could be +o00. That's why we use the following agreements:

Note that a(y, @) = oo since ¢ is surjective.
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Proof of Proposition 1

For every f € E(H) denote by f the restriction f|X. For every y € Y
there is a map ay : E(H) — R, ay(f) = ¢(f)(y). Since  is uniformly
continuous, so is each ay|Ey(X), y € Y.

Suppose H = |J, Hk is the union of an increasing sequence {H} of
compact sets.

We use the idea of supports introduced by Gul’ko and the extension
of that notion introduced by Mikolaj Krupski. For every y € Y and
every p, k € N we define the families

AK(y) = {K C Hx : K is closed and a(y, K) < oo} and

AK(y) = {K C Hx : K is closed and a(y, K) < p}, where

a(y, K) = sup{lay(f) —ay(9)| : f,g € E(H), [f(x) —g(x)| < 1Vx € K}.

Possibly, some or both of the values «,(f), a,(g) from the definition of
a(y, K) could be +o00. That's why we use the following agreements:

(*) co+00=00,00—00=—-00+00=0,—00—00=—00.

Note that a(y, @) = oo since ¢ is surjective.
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(1) Forevery y € Y there is p, k € N such that A,’;(y) contains a
finite nonempty subset of X.
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(1) Forevery y € Y there is p, k € N such that A,’;(y) contains a
finite nonempty subset of X.

(2) Eachset YX ={y € Y : Af(y) # @} is a closed subset of Y.
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(1) Forevery y € Y there is p, k € N such that A,’;(y) contains a
finite nonempty subset of X.

(2) Eachset YX ={y € Y : Af(y) # @} is a closed subset of Y.

(3) Eachset YX, = {y e Y§ : 3K € Al(y) with |K| < g} is closed in
Yx. For every klet Yi =, YX ;- Obviously,
Y C {y e Y : AX(y) # @}. Since Hx C Hi.4 for all k, the
sequence { Y} is increasing. It may happen that Y, = @ for
some k, but (1) implies that Y C (J, Yk.
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(1) Forevery y € Y there is p, k € N such that A,’;(y) contains a
finite nonempty subset of X.

(2) Eachset YX ={y € Y : Af(y) # @} is a closed subset of Y.

(3) Eachset YX, = {y e Y§ : 3K € Al(y) with |K| < g} is closed in
Yx. For every klet Yi =, YX ;- Obviously,
Yy C {y € Y: AK(y) # @}. Since Hx C Hi,1 for all k, the
sequence { Y} is increasing. It may happen that Y, = @ for
some k, but (1) implies that Y C (J, Yk.

(4) For every y € Y the family AX(y) is closed under finite

intersections and a(y, Ki N Kz) < a(y, K1) + a(y, Kz) for all
Ki, Kz € AX(y).
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(1) Forevery y € Y there is p, k € N such that A,’;(y) contains a
finite nonempty subset of X.

(2) Eachset YX ={y € Y : Af(y) # @} is a closed subset of Y.

(3) Eachset YX, = {y e Y§ : 3K € Al(y) with |K| < g} is closed in
YX. For every k let Y = |, , YA 4 Obviously,

Y C {y e Y : AX(y) # @}. Since Hx C Hi.4 for all k, the
sequence { Y} is increasing. It may happen that Y, = @ for
some k, but (1) implies that Y C (J, Yk.

(4) For every y € Y the family AX(y) is closed under finite
intersections and a(y, Ki N Kz) < a(y, K1) + a(y, Kz) for all
Ki, Ko € AX(y).

(5) For every y € Y the set K(y, k) = N AX(y) is a nonempty finite
subset of H with K(y, k) € A¥(y). Moreover, if y € Y then there
exists k such that y € Y, and K(y, k) C X.
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(1) Forevery y € Y there is p, k € N such that A,’;(y) contains a
finite nonempty subset of X.

(2) Eachset YX ={y € Y : Af(y) # @} is a closed subset of Y.

(3) Eachset YX, = {y e Y§ : 3K € Al(y) with |K| < g} is closed in
YX. For every k let Y = |, , YA 4 Obviously,

Y C {y e Y : AX(y) # @}. Since Hx C Hi.4 for all k, the
sequence { Y} is increasing. It may happen that Y, = @ for
some k, but (1) implies that Y C (J, Yk.

(4) For every y € Y the family AX(y) is closed under finite
intersections and a(y, Ki N Kz) < a(y, K1) + a(y, Kz) for all
Ki, Ko € AX(y).

(5) For every y € Y the set K(y, k) = N AX(y) is a nonempty finite
subset of H with K(y, k) € A¥(y). Moreover, if y € Y then there
exists k such that y € Y, and K(y, k) C X.

(6) For every k we define M (p,1) = Y§ and
M"(p, q) = Y5q\ Y54 1 if > 2. Then

U{M"(p, q):p,g=1,2,..} and for every y € M*(p, q)
there exists a unique set Kiy(y) € AX(y) of cardinality g such
that a(y, Kip(¥)) < p.
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(7) For every q let [H,]? denote the set of all g-points subsets of H
endowed with the Vietoris topology. The map
Prog : MK(p, q) — [Hk]9, Prog(y) = Kip(¥), is continuous.
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(7) For every q let [H,]? denote the set of all g-points subsets of H
endowed with the Vietoris topology. The map
Prog : MK(p, q) — [Hk]9, Prog(y) = Kip(¥), is continuous.

(8) Since Y, are compact subsets of Y, each M*(p, q) is a
countable union of compact subsets {FX(p,q) : n=1,2,..} of Y.
So, by (6), Yk = U{FX(p,q) : n,p,q =1,2,..}. According to (7),
all maps o, = Sog| Fi (P, q) : FX(p,q) — [Hk]9 are continuous.
Moreover, since Y C |J, Yk,

Y c U{FX(p,q) : n,p,q,k = 1,2, ..}. The fibers of each map
- FX (P, q) — [Hk]9 are finite.
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(7) For every q let [H,]? denote the set of all g-points subsets of H
endowed with the Vietoris topology. The map
Prog : MK(p, q) — [Hk]9, Prog(y) = Kip(¥), is continuous.

(8) Since Y, are compact subsets of Y, each M*(p, q) is a
countable union of compact subsets {FX(p,q) : n=1,2,..} of Y.
So, by (6), Yk = U{FX(p,q) : n,p,q =1,2,..}. According to (7),
all maps o, = Sog| Fi (P, q) : FX(p,q) — [Hk]9 are continuous.
Moreover, since Y C |J, Yk,

Y c U{FX(p,q) : n,p,q,k = 1,2, ..}. The fibers of each map
- FX (P, q) — [Hk]9 are finite.

We can complete the proof of Proposition 1. Suppose H has a
property P satisfying conditions (a) — (d). Then so does H for each
Kk, q because Hy is closed in H. But [Hk]9 is homeomorphic to the
open subset W, = {(x1, .., Xq) € H] : x; # x;} of H]. So, W, has the
property P as a countable union of closed subsets of H/. Hence,
each set ¢qu(F,’,‘ (p, q)) also has the property P because it is a
compact subset of W,. Finally, since the maps

1 Fr(p,q) — 5, (Fr(p; q)) are perfect and have finite fibers,

each F/(p, g) has the property P. Therefore,
Yo = U{F(p,q): n,p,q,k =1,2,..} has the property P.
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We can finish the proof of Theorem 3. Let T : Dp(X) — Dp(Y) be a
uniformly continuous inversely bounded surjection. It suffices to show
that for every map h: Y — Z, where Z is separable metric space,
thereare maps hp : Y — Ypand g: Yo — Z such that dim Yo =0
and h = go hy (when h = go hy for some map g, we write hy > h). We
fix such hand let h: Y — Z be a continuous extension of h, where
Z is a compact metric space. For every W ¢ C(5X) we denote by
AV the diagonal product of all functions from W. Clearly, AW (8X) is
a subset of the product [[{R; : f € W}, and let 77 : AV(5X) — R be
the projection. Following Gul'ko, we call a set W c C(8X) admissible
if the family =(V) = {77 : f € W} is a QS-algebra on AV(5X).
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We can finish the proof of Theorem 3. Let T : Dp(X) — Dp(Y) be a
uniformly continuous inversely bounded surjection. It suffices to show
that for every map h: Y — Z, where Z is separable metric space,
thereare maps hp : Y — Ypand g: Yo — Z such that dim Yo =0
and h = go hy (when h = go hy for some map g, we write hy = h). We
fix such hand let h: Y — Z be a continuous extension of h, where
Z is a compact metric space. For every W ¢ C(5X) we denote by
AV the diagonal product of all functions from W. Clearly, AW (8X) is
a subset of the product [[{R; : f € W}, and let 77 : AV(5X) — R be
the projection. Following Gul'ko, we call a set W c C(8X) admissible
if the family =(V) = {77 : f € W} is a QS-algebra on AV(5X).

We construct by induction two sequences {V,},>1 C C(8X) and
{®n}n>1 € C(BY,R) of countable sets, countable QS-algebras A, on
Y, = (A®)(BY), where o1, = {T(f) : f € W}, satisfying the following

conditions for every n > 1. Here, T(f) : BY — R is the extension of
T(f).
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THANK YOU
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(8.5) ® c C(BY) is admissible and Ad¢ =~ h;

THANK YOU
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(8.5) ® c C(BY) is admissible and Ad¢ =~ h;
(3.6) ®p C Bpypy = LU {No (AD)): A€ Ay}

THANK YOU
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(8.5) ® c C(BY) is admissible and Ad¢ =~ h;
(8.6) ®, C Ppi1 =P, U{A0 (AD]) A€ A}
(8.7) Each WV, is admissible, dim(AWV,)(8X) =0and V, C W, +;

THANK YOU
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(8.5) ® c C(BY) is admissible and Ad¢ =~ h;
(8.6) & C dpyq = DL U{ Ao (AD): X e Ap};
(8.7) Each WV, is admissible, dim(AWV,)(8X) =0and V, C W, +;
(3.8) Apyq contains {Aody: A€ Ap}, where o, : Y, | — Yyisthe

surjective map generated by the inclusion ¢, C &7 ;

THANK YOU
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(8.5) ® c C(BY) is admissible and Ad¢ =~ h;
(8.6) & C dpyq = DL U{ Ao (AD): X e Ap};
(8.7) Each WV, is admissible, dim(AWV,)(8X) =0and V, C W, +;
(3.8) Apyq contains {Aody: A€ Ap}, where o, : Y, | — Yyisthe

surjective map generated by the inclusion ¢, C &7 ;

(3.9) Forevery ge ¢, C(BY) thereis fy € W, with ||fy]| < c.||g|| and
T(fg) =g.

V.

THANK YOU
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(8.5) ® c C(BY) is admissible and Ad¢ =~ h;

(8.6) & C dpyq = DL U{ Ao (AD): X e Ap};

(8.7) Each WV, is admissible, dim(AWV,)(8X) =0and V, C W, +;

(8.8) Apyq contains {Aod,: A € Ap}, where ;- Yr’,+1 — Y/} is the
surjective map generated by the inclusion &7, C ¢} _ ;;

(3.9) Forevery ge ¢, C(BY) thereis fy € W, with ||fy]| < c.||g|| and
T(fg) = 9.

Let W =J,V,, Xo = (AV)(X) and Xo = (AW)(BX). Similarly, let

¢ =J,Pn Yo=ho(Y)and Yo = (AP)(BY), where hyg = (AD)|Y.
Both W and ¢ are countable and V is an admissible subset of C(5X),
see (3.4). Hence, the family E(X,) = {r;: f € W} is a countable
QS-algebra on Xy. Moreover, dim Xy = 0 and there is a ¢c-good
uniformly continuous surjection ¢ : E5(Xo) — Ep( Yo) satisfying the
conditions from Proposition 1. Hence, dim Yy, = 0.

THANK YOU
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