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It is my pleasure to present a talk at the conference dedicated to Prof.
Sergey Gul’ko. I have rectly the opportunity to study Gul’ko’s paper
about preservation of the dimension by uniform homeomorphisms
between Cp-spaces. The technique which was developed by Gul’ko
in that paper, and specially the so called Gul’ko supports’ are one of
the most interesting and helpful achievemnts in Cp-theory.
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Motivation

The Cp-theory was introduced by Arhangel’skii and his students
(recall that for a Tychonoff space X the set of all continuous functions
on X with the pointwise convergence topology is denoted by Cp(X )).

One of the main directions in Cp-theory is the investigation of
properties P such that if X ∈ P and Cp(X ) is linearly or uniformly
homeomorphic to Cp(Y ), then Y ∈ P. Probably, the best results in
that direction are Pestov’s theorem, stating that if Cp(X ) and Cp(Y )
are linearly homeomorphic, then dimX = dimY , and Uspenskii’s
theorem that pseudocompactness and compactness are determined
by the uniform structure of Cp-spaces.

Let’s note that if we consider the function spaces with the uniform
convergence, the Pestov’s result is not anymore true. Indeed,
according to classical Milyutin’s theorem if X and Y are uncountable
metric compacta, then their function spaces C(X ) and C(Y )
equipped with the sup metric are linearly homeomorphic.
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Pestov’s result was generalized by Gul’ko who proved that
dimX = dimY providing Cp(X ) and Cp(Y ) are uniformly
homeomorphic (recall that a map T : Cp(X ) −→ Cp(Y ) is uniformly
continuous if for every neighborhood U of 0Y there is a nbd V of 0X
such that T (f )− T (g) ∈ U provided f − g ∈ V ).

Gul’ko’s result motivated the investigation of properties P such that if
X ∈ P and Cp(X ) is uniformly homeomorphic to Cp(Y ), then Y ∈ P.

Another direction in the Cp-theory is to investigate properties P such
that if X ∈ P and there is a linear continuous (or uniformly
continuous) surjection T : Cp(X ) −→ Cp(Y ), then Y ∈ P. For example,
in the class of metrizable spaces completeness is preserved by linear
continuous surjections (Baars-de Groot-Pelant), while other absolute
Borel classes are preserved by uniformly continuous surjections
(Marciszewski-Pelant). Moreover, absolute Borel classes greater than
2 and all projective classes are preserved by homeomorphisms
between Cp(X ) and Cp(Y ) when X ,Y are metrizable (Marciszewski).
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In view of Pestov’s result, Arhangelskii asked if dimY ≤ dimX
provided there is a continuous linear surjection T : Cp(X ) −→ Cp(Y ).
This question was answered negatively by Leiderman-Levin-Pestov
and Leiderman-Morris-Pestov.

On the other hand, Leiderma-Levin-Pestov proved that the
Arhangelskii question has a positive answer in dimension 0 when X
and Y are metric compacta. The last result was extended for arbitrary
compact spaces by Kawamura-Leiderman.

Kawamura-Leiderman asked if their result remains true for arbitrary
Tychonoff spaces. This question was the starting point for our
research.

In this talk some results providing a positive answer of the
Kawamura-Leiderman question are discussed. We also discuss the
case when there is a uniformly continuous surjection between Cp(X )
and Cp(Y ).
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Main results
Theorem 1 [Eysen-V]

If there is a linear continuous surjection T : Cp(X ) −→ Cp(Y ), then
dimX = 0 implies dimY = 0.

We consider properties P of metric spaces such that:
(a) if X ∈ P and F ⊂ X is closed, then F ∈ P;
(b) P is closed under finite products;
(c) if X is a countable union of closed subsets each having the

property P, then X ∈ P;
(d) if f : X −→ Y is a perfect map with countable fibers and Y ∈ P,

then X ∈ P;
(e) if X ∈ P and F ⊂ X , then F ∈ P.

For example, 0-dimensionality, countable-dimensionality and strongly
countable-dimensionality satisfy conditions (a)− (d), while
0-dimensionality and countable-dimensionality satisfy also conditions
(b)− (e).
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In the class of metrizable spaces, Theorem 1 has a stronger
analogue:

Theorem 2 [Eysen-Leiderman-V]

Let T : Dp(X ) −→ Dp(Y ) be a linear continuous surjection and P be a
topological property satisfying either conditions (a)− (d) or (b)− (e).
If X is a metric space and Y is perfectly normal, then Y has the
property P provided X ∈ P.

Here Dp(X ) denote either Cp(X ) or C∗
p (X ), where C∗

p (X ) is the set of
bounded continuous functions with the pointwise topology.

We say that a surjection T : Dp(X ) −→ Dp(Y ) is inversely bounded if
for every norm bounded sequence {gn} ⊂ C∗(Y ) there is a norm
bounded sequence {fn} ⊂ C∗(X ) with T (fn) = gn for each n. The
following notion was introduced by Gartside-Feng: A map
T : Dp(X ) −→ Dp(Y ) is c-good if for every g ∈ C∗(Y ) there is
f ∈ C∗(X ) with ||f || ≤ c.||g||. Note that every linearly continuous
surjection T : C∗

p (X ) −→ C∗
p (Y ) is inversely bounded, as wee as every

c-good map.
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Theorem 3 [Eysen-V]

Let T : Dp(X ) −→ Dp(Y ) be a c-good uniformly continuous surjection.
Then Y is 0-dimensional provided so is X .

Corollary [Eysen-V]

Let T : C∗
p (X ) −→ Dp(Y ) be a linear continuous surjection. Then Y is

0-dimensional provided so is X .

Theorem 3 has a stronger version in case X is metrizable and Y is
perfectly normal:

Theorem 4 [Eysen-Leiderman-V]

Let T : Dp(X ) −→ Dp(Y ) be an inversely bounded uniformly
continuous surjection and P be a topological property satisfying
either conditions (a)− (d) or (b)− (e), where X is metrizable and Y
is perfectly normal. Then Y has the property P provided X ∈ P.

In particular, Theorem 3 is true if P is countable-dimensional or
strongly countable-dimensional.
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Proofs
Proof of Theorem 3

A subset E(X ) ⊂ C(X ) is called a QS-algebra (Gul’ko) if:
(i) f + g, f · g and λ.f belong to E(X ) provided f ,g ∈ E(X ) and λ is a
rational number;
(ii) For every x ∈ X there is a its nbd U there exists f ∈ E(X ) such
that f (x) = 1 and f (X\U) = 0.

Following Gul’ko, the proof is reduced to the following proposition:

Proposition 1

Let X and Y be metric compactifications of X and Y , and H ⊂ X be a
σ-compact space containing X . Suppose E(H) is a QS-algebra on H,
E(X ) = {f |X : f ∈ E(H)} and E(Y ) ⊂ C(Y ) is a family such that
every g ∈ E(Y ) is extendable to a map g : Y −→ R and
E(Y ) = {g : g ∈ E(Y )} containing a QS-algebra Γ on Y . Let also
φ : Ep(X ) −→ Ep(Y ) be an uniformly continuous surjection which is
inversely bounded.
If H has a property P satisfying conditions (a)− (d), then there exists
a σ-compact set Y∞ ⊂ Y containing Y with Y∞ ∈ P.
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Proof of Proposition 1

For every f ∈ E(H) denote by f the restriction f |X . For every y ∈ Y
there is a map αy : E(H) −→ R, αy (f ) = φ(f )(y). Since φ is uniformly
continuous, so is each αy |Ep(X ), y ∈ Y .
Suppose H =

⋃
k Hk is the union of an increasing sequence {Hk} of

compact sets.
We use the idea of supports introduced by Gul’ko and the extension
of that notion introduced by Mikolaj Krupski. For every y ∈ Y and
every p, k ∈ N we define the families
Ak (y) = {K ⊂ Hk : K is closed and a(y ,K ) < ∞} and
Ak

p(y) = {K ⊂ Hk : K is closed and a(y ,K ) ≤ p}, where
a(y ,K ) = sup{|αy (f )−αy (g)| : f ,g ∈ E(H), |f (x)−g(x)| < 1 ∀x ∈ K}.

Possibly, some or both of the values αy (f ), αy (g) from the definition of
a(y ,K ) could be ±∞. That’s why we use the following agreements:
(*) ∞+∞ = ∞,∞−∞ = −∞+∞ = 0,−∞−∞ = −∞.

Note that a(y ,∅) = ∞ since φ is surjective.
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(1) For every y ∈ Y there is p, k ∈ N such that Ak
p(y) contains a

finite nonempty subset of X .
(2) Each set Y k

p = {y ∈ Y : Ak
p(y) ̸= ∅} is a closed subset of Y .

(3) Each set Y k
p,q = {y ∈ Y k

p : ∃K ∈ Ak
p(y) with |K | ≤ q} is closed in

Y k
p . For every k let Yk =

⋃
p,q Y k

p,q . Obviously,
Yk ⊂ {y ∈ Y : Ak (y) ̸= ∅}. Since Hk ⊂ Hk+1 for all k , the
sequence {Yk} is increasing. It may happen that Yk = ∅ for
some k , but (1) implies that Y ⊂

⋃
k Yk .

(4) For every y ∈ Yk the family Ak (y) is closed under finite
intersections and a(y ,K1 ∩ K2) ≤ a(y ,K1) + a(y ,K2) for all
K1,K2 ∈ Ak (y).

(5) For every y ∈ Yk the set K (y , k) =
⋂
Ak (y) is a nonempty finite

subset of Hk with K (y , k) ∈ Ak (y). Moreover, if y ∈ Y then there
exists k such that y ∈ Yk and K (y , k) ⊂ X .

(6) For every k we define Mk (p,1) = Y k
p,1 and

Mk (p,q) = Y k
p,q\Y k

2p,q−1 if q ≥ 2. Then
Yk =

⋃
{Mk (p,q) : p,q = 1,2, ..} and for every y ∈ Mk (p,q)

there exists a unique set Kkp(y) ∈ Ak (y) of cardinality q such
that a(y ,Kkp(y)) ≤ p.
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(7) For every q let [Hk ]
q denote the set of all q-points subsets of Hk

endowed with the Vietoris topology. The map
Φkpq : Mk (p,q) −→ [Hk ]

q , Φkpq(y) = Kkp(y), is continuous.
(8) Since Y k

p,q are compact subsets of Y , each Mk (p,q) is a
countable union of compact subsets {F k

n (p,q) : n = 1,2, ..} of Y .
So, by (6), Yk =

⋃
{F k

n (p,q) : n,p,q = 1,2, ..}. According to (7),
all maps Φn

kpq = Φkpq |F k
n (p,q) : F k

n (p,q) −→ [Hk ]
q are continuous.

Moreover, since Y ⊂
⋃

k Yk ,
Y ⊂

⋃
{F k

n (p,q) : n,p,q, k = 1,2, ..}. The fibers of each map
Φn

kpq : F k
n (p,q) −→ [Hk ]

q are finite.

We can complete the proof of Proposition 1. Suppose H has a
property P satisfying conditions (a)− (d). Then so does Hq

k for each
k ,q because Hk is closed in H. But [Hk ]

q is homeomorphic to the
open subset Wq = {(x1, .., xq) ∈ Hq

k : xi ̸= xj} of Hq
k . So, Wq has the

property P as a countable union of closed subsets of Hq
k . Hence,

each set Φn
kpq(F

k
n (p,q)) also has the property P because it is a

compact subset of Wq . Finally, since the maps
Φn

kpq : F k
n (p,q) −→ Φn

kpq(F
k
n (p,q)) are perfect and have finite fibers,

each F k
n (p,q) has the property P. Therefore,

Y∞ =
⋃
{F k

n (p,q) : n,p,q, k = 1,2, ..} has the property P.
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We can finish the proof of Theorem 3. Let T : Dp(X ) −→ Dp(Y ) be a
uniformly continuous inversely bounded surjection. It suffices to show
that for every map h : Y −→ Z , where Z is separable metric space,
there are maps h0 : Y −→ Y0 and g : Y0 −→ Z such that dimY0 = 0
and h = g ◦h0 (when h = g ◦h0 for some map g, we write h0 ≻ h). We
fix such h and let h̄ : βY −→ Z be a continuous extension of h, where
Z is a compact metric space. For every Ψ ⊂ C(βX ) we denote by
△Ψ the diagonal product of all functions from Ψ. Clearly, △Ψ(βX ) is
a subset of the product

∏
{Rf : f ∈ Ψ}, and let πf : △Ψ(βX ) −→ Rf be

the projection. Following Gul’ko, we call a set Ψ ⊂ C(βX ) admissible
if the family π(Ψ) = {πf : f ∈ Ψ} is a QS-algebra on △Ψ(βX ).

We construct by induction two sequences {Ψn}n≥1 ⊂ C(βX ) and
{Φn}n≥1 ⊂ C(βY ,R) of countable sets, countable QS-algebras Λn on
Y ′

n = (△Φ′
n)(βY ), where Φ′

n = {T (f ) : f ∈ Ψn}, satisfying the following
conditions for every n ≥ 1. Here, T (f ) : βY −→ R is the extension of
T (f ).
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(3.5) Φ1 ⊂ C(βY ) is admissible and △Φ1 ≻ h;
(3.6) Φn ⊂ Φn+1 = Φ′

n ∪ {λ ◦ (△Φ′
n) : λ ∈ Λn};

(3.7) Each Ψn is admissible, dim(△Ψn)(βX ) = 0 and Ψn ⊂ Ψn+1;
(3.8) Λn+1 contains {λ ◦ δn : λ ∈ Λn}, where δn : Y ′

n+1 −→ Y ′
n is the

surjective map generated by the inclusion Φ′
n ⊂ Φ′

n+1;

(3.9) For every g ∈ Φn ∩ C(βY ) there is f g ∈ Ψn with ||fg || ≤ c.||g|| and
T (fg) = g.

Let Ψ =
⋃

n Ψn, X0 = (△Ψ)(X ) and X 0 = (△Ψ)(βX ). Similarly, let
Φ =

⋃
n Φn, Y0 = h0(Y ) and Y 0 = (△Φ)(βY ), where h0 = (△Φ)|Y .

Both Ψ and Φ are countable and Ψ is an admissible subset of C(βX ),
see (3.4). Hence, the family E(X 0) = {πf : f ∈ Ψ} is a countable
QS-algebra on X 0. Moreover, dimX 0 = 0 and there is a c-good
uniformly continuous surjection φ : Ep(X0) −→ Ep(Y0) satisfying the
conditions from Proposition 1. Hence, dimY0 = 0.

THANK YOU
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