

Национальный исследовательский

Томский государственный университет Пространства двузначных функций на счётных метризуемых компактах

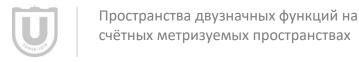
Определение. Пространство X будем называть однородным, если $\forall x, y \in X$ существует гомеоморфизм $h: X \to X$ такой, что h(x) = y.

Теорема. (van Mill, 2015) Канторово множество однородно.

Определение. Пространство X называется однородным, если $\forall A, B \subset X$, где A, B -счётные плотные, существует гомеоморфизм h такой, что h(A) = B.

Пример. Топологическая сумма S_1 и S_2 счётно плотно однородна, но не однородна.

Теорема. (van Mill, 2015) Канторово множество счётно плотно однородно.



Известно, что канторово множество есть произведение двоеточий D^{\aleph_0} . Ясно, что $D^{\aleph_0}=C_p(\mathbb{N},D)$.

В произведении вещественных прямых известны подпространства c и c_0 . Известно, что $C_p[1,\omega] \sim c_0$.

Мартишевский и Добровольский в 1995 году доказали, что c_0 и c не являются линейно гомеоморфными.

В $C_p(\mathbb{N},D)$ рассмотрим аналоги пространств c и c_0 :

- d_0 пространство двузначных последовательностей, сходящихся к нулю
- d пространство сходящихся двузначных последовательностей.

Рассмотрим базисы пространств d и d_0 :

$$t_1 = (1,1,1,1,...)$$
 $b_1 = (1,0,0,0,...)$
 $t_2 = (1,0,0,0,...)$ $b_2 = (0,1,0,0,...)$
 $t_3 = (0,1,0,0,...)$ $b_3 = (0,0,1,0,...)$
 $t_4 = (0,0,1,0,...)$ $b_4 = (0,0,0,1,...)$

Используя данный базис нельзя установить линейный гомеоморфизм. Базис $\{t_i\}_{i=1}^\infty$ не является ω -независимый, а $\{b_i\}_{i=1}^\infty$ ω -независимый.

Рассмотрим другой базис:

$$t_1 = (1,0,0,0,...)$$
 $b_1 = (1,1,1,1,...)$
 $t_2 = (1,1,0,0,...)$ $b_2 = (1,0,0,0,...)$
 $t_3 = (0,1,1,0,...)$ $b_3 = (0,1,0,0,...)$
 $t_4 = (0,0,1,1,...)$ $b_4 = (0,0,1,0,...)$

Тогда отображение $T:d\to d_0$, заданное по правилу $T(b_i)=t_i$ является линейным гомеоморфизмом.

Общий вид отображение T и T^{-1}

$$Tx = (x_1, x_1 + x_2, x_2 + x_3, \dots, x_{n-1} + x_n, \dots) \ \forall \ x \in d$$

$$T^{-1}y = \left(y_1, y_1 + y_2, y_1 + y_2 + y_3, \dots, \sum_{i=1}^{n} y_i, \dots\right) \ \forall \ y \in d_0$$

Линейный гомеоморфизм $T: \mathcal{C}_p([1,\omega],D) \to d$ действует по правилу

$$Tx = T(x_1, x_2, \dots, x(\omega)) = \left(x(\omega), x_1, x_1 + x_2 + x(\omega), \dots, \sum_{i=1}^{2n} x_i + x(\omega), \sum_{i=1}^{2n+1} x_i, \dots\right)$$
$$T^{-1}y = ((y_1 + y_2) + y_1, (y_2 + y_3) + y_1, \dots, (z_n + z_{n+1}) + z_1, \dots)$$

Базисы пространств $C_p([1,\omega],D)$ и d соответственно:

$$p_1 = (1,1,1,1,...,1)$$
 $t_1 = (1,1,1,1,...)$
 $p_2 = (1,0,0,0,...,0)$ $t_2 = (0,1,1,1,...)$
 $p_3 = (0,1,0,0,...,0)$ $t_3 = (0,0,1,1,...)$
 $p_4 = (0,0,1,0,...,0)$ $t_4 = (0,0,0,1,...)$

Теорема. Пусть L бесконечномерное подпространство в d_0 , тогда существует подпространство $L_0 \subset L$ такое, что L_0 дополняемо в L и L_0 линейно гомеоморфно d_0 .

Теорема. Пусть L дополняемо в d_0 . Тогда L линейно гомеоморфно d_0 .

Доказательство. Из прошлой теоремы следует, что d_0 дополняемо в L, $L=d_0\times X$. Из условий теоремы имеем $d_0=L\times Y$.

$$d_0 \sim (d_0 \times d_0 \times \cdots)_0 \sim ((L \times Y) \times (L \times Y) \times \cdots)_0 \sim (L \times L \times \cdots)_0 \times (Y \times Y \times \cdots)_0$$

$$\sim L \times (L \times L \times \cdots)_0 \times (Y \times Y \times \cdots)_0 \sim L \times (d_0 \times d_0 \times \cdots)_0 \sim$$

$$\sim d_0 \times X \times (d_0 \times d_0 \times \cdots)_0 \sim X \times d_0 \sim L.$$

Теорема. Для любого ординала $\alpha < \omega_1$ пространства $C_p([1,\alpha],D)$ и d_0 линейно гомеоморфны.

Известно, что если X компакт веса m, то количество открыто-замкнутых множеств не превосходит m.

Теорема. $C_p(D^{\aleph_0}, D)$ и d_0 не являются линейно гомеоморфными. Так как мощность $L(D^{\aleph_0})$ - континуально, а $L([1, \omega])$ является счётным.

Теорема. Пусть Y — нульмерное метрическое не локально компактное пространство. Тогда пространство $\left(C_p(\mathbb{N}_1,D)\times C_p(\mathbb{N}_2,D)\times\cdots\right)_0$ дополняемо вкладывается в пространство $C_p(Y,D)$.

Теорема. Пусть X σ -компактное локально компактное метрическое пространство, а Y – не локально компактное нульмерное метрическое пространство. Тогда $C_p(X,D)$ и $C_p(Y,D)$ не являются линейно гомеоморфными.

Спасибо за внимание

