Simplicial structure on the groups of virtual pure braids

Valeriy Bardakov

Sobolev Institute of Mathematics

Joint work with R. Mikhailov and J. Wu

Tomsk
December, 2018

Simplicial set and simplicial group

A sequence of sets $\mathcal{X}=\left\{X_{n}\right\}_{n \geq 0}$ is called a simplicial set if there are face maps:

$$
d_{i}: X_{n} \longrightarrow X_{n-1} \text { for } 0 \leq i \leq n
$$

and degeneracy maps

$$
s_{i}: X_{n} \longrightarrow X_{n+1} \text { for } 0 \leq i \leq n .
$$

This maps satisfy the following simplicial identities:

$$
\begin{array}{lll}
d_{i} d_{j}=d_{j-1} d_{i} & \text { if } \quad i<j, \\
s_{i} s_{j}=s_{j+1} s_{i} & \text { if } \quad i \leq j, \\
d_{i} s_{j}=s_{j-1} d_{i} & \text { if } \quad i<j, \\
d_{j} s_{j}=i d=d_{j+1} s_{j}, & & \\
d_{i} s_{j}=s_{j} d_{i-1} & \text { if } & i>j+1 .
\end{array}
$$

A simplicial group $\mathcal{G}=\left\{G_{n}\right\}_{n \geq 0}$ consists of a simplicial set \mathcal{G} for which each G_{n} is a group and each d_{i} and s_{i} is a group homomorphism.

Examples:

1) Simplicial circle S_{*}^{1} : Let $S^{1}=\Delta[1] / \partial \Delta[1]$ be a circle. Define
$S_{0}^{1}=\{*\}, S_{1}^{1}=\{*, \sigma\}, S_{2}^{1}=\left\{*, s_{0} \sigma, s_{1} \sigma\right\}, \ldots, S_{n}^{1}=\left\{*, x_{0}, \ldots, x_{n-1}\right\}, \ldots$
where $x_{i}=s_{n-1} \ldots \widehat{s}_{i} \ldots s_{0} \sigma$. It is not difficult to check that S_{*}^{1} is a simplicial set.
2) Free simplicial group F_{*} : Let $F_{0}=\{e\}$ be the trivial group, $F_{1}=\langle y\rangle$ be the infinite cyclic group, $F_{2}=\left\langle s_{0} y, s_{1} y\right\rangle$ be the free group of rank 2 , $F_{n}=\left\langle y_{0}, \ldots, y_{n-1}\right\}$, where $y_{i}=s_{n-1} \ldots \widehat{s}_{i} \ldots s_{0} y$. It is not difficult to check that F_{*} is a simplicial group.

Milnor's $F\left[S^{1}\right]$-construction gives a possibility to define the homotopy groups $\pi_{n}\left(S^{2}\right)$ combinatorially, in terms of free groups. The $F\left[S^{1}\right]$-construction is a free simplicial group with the following terms

$$
\begin{aligned}
& F\left[S^{1}\right]_{0}=1 \\
& F\left[S^{1}\right]_{1}=F(\sigma) \\
& F\left[S^{1}\right]_{2}=F\left(s_{0} \sigma, s_{1} \sigma\right) \\
& F\left[S^{1}\right]_{3}=F\left(s_{i} s_{j} \sigma \mid 0 \leq j \leq i \leq 2\right)
\end{aligned}
$$

The face and degeneracy maps are determined with respect to the standard simplicial identities for these simplicial groups.

Milnor proved that the geometric realization of $F\left[S^{1}\right]$ is weakly homotopically equivalent to the loop space $\Omega S^{2}=\Omega \Sigma S^{1}$. Hence, the homotopy groups of the Moore complex of $F\left[S^{1}\right]$ are naturally isomorphic to the homotopy groups $\pi_{n}\left(S^{2}\right)$:

$$
\pi_{n}\left(F\left[S^{1}\right]\right)=Z_{n}\left(F\left[S^{1}\right]\right) / B_{n}\left(F\left[S^{1}\right]\right) \simeq \pi_{n+1}\left(S^{2}\right)
$$

The Moore complex $N \mathcal{G}=\left\{N_{n} \mathcal{G}\right\}_{n \geq 0}$ of a simplicial group \mathcal{G} is defined by

$$
N_{n} \mathcal{G}=\bigcap_{i=1}^{n} \operatorname{Ker}\left(d_{i}: G_{n} \longrightarrow G_{n-1}\right)
$$

Then $d_{0}\left(N_{n} \mathcal{G}\right) \subseteq N_{n-1} \mathcal{G}$ and $N \mathcal{G}$ with d_{0} is a chain complex of groups. An element in

$$
\mathrm{B}_{n} \mathcal{G}=d_{0}\left(N_{n+1} \mathcal{G}\right)
$$

is called a Moore boundary and an element in

$$
\mathrm{Z}_{n} \mathcal{G}=\operatorname{Ker}\left(d_{0}: N_{n} \mathcal{G} \longrightarrow N_{n-1} \mathcal{G}\right)
$$

is called a Moore cycle. The nth homotopy group $\pi_{n}(\mathcal{G})$ is defined to be the group

$$
\pi_{n}(\mathcal{G})=H_{n}(N \mathcal{G})=\mathrm{Z}_{n} \mathcal{G} / \mathrm{B}_{n} \mathcal{G}
$$

Braid groups

Braid group B_{n} on $n \geq 2$ strands is generated by $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}$ and is defined by relations

$$
\begin{aligned}
\sigma_{i} \sigma_{i+1} \sigma_{i} & =\sigma_{i+1} \sigma_{i} \sigma_{i+1} \\
\sigma_{i} \sigma_{j} & =\sigma_{j} \sigma_{i}
\end{aligned}
$$

for $i=1,2, \ldots, n-2$,
for $|i-j| \geq 2$.

Geometric interpretation

The generators σ_{i} have the following geometric interpretation:

There is a homomorphism $\varphi: B_{n} \longrightarrow S_{n}, \varphi\left(\sigma_{i}\right)=(i, i+1)$,
$i=1,2, \ldots, n-1$. Its $\operatorname{kernel} \operatorname{Ker}(\varphi)$ is called the pure braid group and is denoted by P_{n}. Note that P_{2} is infinite cyclic group.

Markov proved that P_{n} is a semi-direct product of free groups:

$$
P_{n}=U_{n} \lambda U_{n-1} \lambda \ldots \lambda U_{2}
$$

where $U_{k} \simeq F_{k-1}, k=2,3, \ldots, n$, is a free group of rank k.
F. Cohen and J. Wu (2011) defined simplicial group $A P_{*}=\left\{A P_{n}\right\}_{n \geq 0}$, where $A P_{n}=P_{n+1}$ with face and degeneracy maps corresponding to deleting and doubling of strands, respectively. They proved that $A P_{*}$ is contractible (hence $\pi_{n}\left(A P_{*}\right)$ is trivial group for all n).

On the other side, F. Cohen and J. Wu constructed an injective canonical map of simplicial groups

$$
\Theta: F\left[S^{1}\right] \longrightarrow A P_{*},
$$

This leads to the conclusion that the cokernel of Θ is homotopy equivalent to S^{2}. Hence, it is possible to present generators of $\pi_{n}\left(S^{2}\right)$ by pure braids.

Simplicial subgroup T_{*}^{c}

Denote $c_{11}=\sigma_{1}^{-2} \in P_{2}$ and T_{*}^{c} be a simplicial subgroup of $A P_{*}$ that is generated by c_{11}, i.e.

$$
T_{0}=1, \quad T_{1}=\left\langle c_{11}\right\rangle, \quad T_{2}=\left\langle c_{21}, c_{12}\right\rangle, \quad T_{3}=\left\langle c_{31}, c_{22}, c_{13}\right\rangle, \quad \ldots,
$$

where
$c_{21}=s_{0} c_{11}, c_{12}=s_{1} c_{11}, \quad c_{31}=s_{1} s_{0} c_{11}, c_{22}=s_{2} s_{0} c_{11}, c_{13}=s_{2} s_{1} c_{11}, \ldots$
Then $\Theta\left(F\left[S^{1}\right]\right)=T_{*}^{c}$.

Presentation of P_{n} in cabled generators

It is not difficult to see that

$$
P_{n}=\left\langle T_{2}, T_{3}, \ldots, T_{n-1}\right\rangle
$$

Hence, P_{n} is generated by elements that come from c_{11} with the cabling operations.

Question

What is a set of defining relations of P_{n} into the generators $c_{i j}$?

A set of defining relations for P_{4}

Proposition [V. B, R. Mikhailov, J. Wu, 2018]
The group P_{4} is generated by elements

$$
\begin{array}{llllll}
c_{11}, & c_{21}, & c_{12}, & c_{31}, & c_{22}, & c_{13}
\end{array}
$$

and is defined by relations (where $\varepsilon= \pm 1$):

$$
\begin{gathered}
c_{21}^{c_{11}^{\varepsilon}}=c_{21}, \quad c_{12}^{c_{11}^{\varepsilon}}=c_{12}^{c_{21}^{-\varepsilon}}, \quad c_{31}^{c_{11}^{\varepsilon}}=c_{31}, \quad c_{22}^{c_{11}^{\varepsilon}}=c_{22}, \quad c_{13}^{c_{11}^{\varepsilon}}=c_{13}^{c_{22}^{-\varepsilon}}, \\
c_{31}^{c_{21}^{\varepsilon}}=c_{31}, \quad c_{22}^{c_{21}^{\varepsilon}}=c_{22}^{c_{31}^{-\varepsilon}}, \quad c_{13}^{c_{21}^{\varepsilon}}=c_{13}^{c_{22}^{\varepsilon} c_{31}^{-\varepsilon}}, \\
c_{31}^{c_{12}^{\varepsilon}}=c_{31}, \quad c_{13}^{c_{12}^{\varepsilon}}=c_{13}^{c_{31}^{-\varepsilon}} \\
c_{22}^{c_{12}^{-1}}=c_{13}^{c_{31}} c_{13}^{-c_{22}} c_{22}\left[c_{21}^{2}, c_{12}^{-1}\right], \quad c_{22}^{c_{12}}=\left[c_{12}, c_{21}^{-2}\right] c_{13}^{-c_{22}^{-2}} c_{22} c_{13}^{c_{31}^{-1}}
\end{gathered}
$$

Virtual braid group

The virtual braid group $V B_{n}$ was introduced by L. Kauffman (1996).
$V B_{n}$ is generated by the classical braid group $B_{n}=\left\langle\sigma_{1}, \ldots, \sigma_{n-1}\right\rangle$ and the permutation group $S_{n}=\left\langle\rho_{1}, \ldots, \rho_{n-1}\right\rangle$. Generators $\rho_{i}, i=1, \ldots, n-1$, satisfy the following relations:

$$
\begin{align*}
\rho_{i}^{2} & =1 & & \text { for } i=1,2, \ldots, n-1, \tag{1}\\
\rho_{i} \rho_{j} & =\rho_{j} \rho_{i} & & \text { for }|i-j| \geq 2, \tag{2}\\
\rho_{i} \rho_{i+1} \rho_{i} & =\rho_{i+1} \rho_{i} \rho_{i+1} & & \text { for } i=1,2 \ldots, n-2 . \tag{3}
\end{align*}
$$

Other defining relations of the group $V B_{n}$ are mixed and they are as follows

$$
\begin{align*}
\sigma_{i} \rho_{j} & =\rho_{j} \sigma_{i} & & \text { for } \quad|i-j| \geq 2 \tag{4}\\
\rho_{i} \rho_{i+1} \sigma_{i} & =\sigma_{i+1} \rho_{i} \rho_{i+1} & & \text { for } \quad i=1,2, \ldots, n-2
\end{align*}
$$

Virtual pure braid group

The generators ρ_{i} have the following diagram

As in classical case there is a homomorphism

$$
\varphi: V B_{n} \longrightarrow S_{n}, \quad \varphi\left(\sigma_{i}\right)=\varphi\left(\rho_{i}\right)=\rho_{i}, \quad i=1,2, \ldots, n-1
$$

Its kernel $\operatorname{Ker}(\varphi)$ is called the virtual pure braid group and is denoted by $V P_{n}$.

Define the following elements in $V B_{n}$:

$$
\lambda_{i, i+1}=\rho_{i} \sigma_{i}^{-1}, \quad \lambda_{i+1, i}=\rho_{i} \lambda_{i, i+1} \rho_{i}=\sigma_{i}^{-1} \rho_{i}, \quad i=1,2, \ldots, n-1
$$

$$
\lambda_{i j}=\rho_{j-1} \rho_{j-2} \ldots \rho_{i+1} \lambda_{i, i+1} \rho_{i+1} \ldots \rho_{j-2} \rho_{j-1}
$$

$\lambda_{j i}=\rho_{j-1} \rho_{j-2} \ldots \rho_{i+1} \lambda_{i+1, i} \rho_{i+1} \ldots \rho_{j-2} \rho_{j-1}, \quad 1 \leq i<j-1 \leq n-1$.

Theorem [V. B, 2004]

The group $V P_{n}(n \geq 2)$ admits a presentation with the generators $\lambda_{i j}, 1 \leq i \neq j \leq n$, and the following relations:

$$
\begin{aligned}
& \lambda_{i j} \lambda_{k l}=\lambda_{k l} \lambda_{i j} \\
& \lambda_{k i} \lambda_{k j} \lambda_{i j}=\lambda_{i j} \lambda_{k j} \lambda_{k i}
\end{aligned}
$$

where distinct letters stand for distinct indices.

Note that $V P_{2}=\left\langle\lambda_{12}, \lambda_{21}\right\rangle$ is 2-generated free group. The generators have geometric interpretation:

Cabling of virtual pure braids

Let $V P_{*}=\left\{V P_{n}\right\}_{n \geq 1}$ be the set of virtual pure braid groups. Define the face map:

$$
d_{i}: V P_{n} \longrightarrow V P_{n-1}, \quad i=1,2, \ldots, n
$$

what is the deleting of the i th strand.
Example:

Cabling of virtual pure braids

Define the degeneracy map:

$$
s_{i}: V P_{n} \longrightarrow V P_{n+1}, \quad i=1,2, \ldots, n
$$

what is the doubling of the i th strand.
Example:

It is not difficult to see that we have the simplicial group

$$
V A P_{*} \quad: \quad \cdots \rightleftarrows V A P_{2} \rightleftarrows V A P_{1} \rightleftarrows V A P_{0}
$$

where $V A P_{n}=V P_{n+1}$.

Proposition

$V A P_{*}$ is contractible, i.e. $\pi_{n}\left(V A P_{*}\right)=0$ for all $n \geq 1$.

Simplicial subgroup T_{*}

Define a simplicial group $T_{*}=\left\{T_{n}\right\}_{n \geq 0}$ that is a simplitial subgroup of $V P_{*}$ and is generated by λ_{12} and λ_{21} :

$$
T_{*} \quad: \quad \cdots \rightleftarrows T_{2} \rightleftarrows T_{1} \rightleftarrows T_{0}
$$

where $T_{n}, n=0,1, \ldots$, is defined by the following manner

$$
T_{0}=\{e\}, \quad T_{1}=V P_{2}, \quad T_{n+1}=\left\langle s_{1}\left(T_{n}\right), s_{2}\left(T_{n}\right), \ldots, s_{n+1}\left(T_{n}\right)\right\rangle
$$

If we let $a_{11}=\lambda_{12}, b_{11}=\lambda_{21}$, and

$$
a_{i j}=s_{n} \ldots \widehat{s}_{i} \ldots s_{1} a_{11}, \quad b_{i j}=s_{n} \ldots \widehat{s}_{i} \ldots s_{1} b_{11}, \quad i+j=n+1
$$

Then

$$
T_{n}=\left\langle a_{k l}, b_{k l}: k+l=n+1\right\rangle, \quad n=1,2, \ldots
$$

Presentation of T_{*}

Problem
 Find a set of defining relations for $T_{n}, n=2,3, \ldots$

Decomposition of $V P_{3}$

Put $c_{i j}=b_{i j} a_{i j}$. It is not difficult to see that $c_{i j} \in P_{i+j}$.
Theorem [V. B., R. Mikhailov, V. V. Vershinin and J. Wu, 2016]
The group $V P_{3}$ is generated by elements

$$
a_{11}, \quad c_{11}, \quad a_{21}, \quad a_{12}, \quad c_{21}, \quad c_{12}
$$

and is defined by relations

$$
\begin{gathered}
{\left[a_{21}, a_{12}\right]=\left[c_{21} a_{21}^{-1}, c_{12} a_{12}^{-1}\right]=1,} \\
a_{21}^{c_{11}}=a_{21}, \quad c_{21}^{c_{11}}=c_{21}, \quad a_{12}^{c_{11}}=a_{12}^{c_{12} c_{21}^{-1}}, \quad c_{12}^{c_{11}}=c_{12}^{c_{21}^{-1}},
\end{gathered}
$$

i. e. $V P_{3}=\left\langle T_{2}, c_{11}\right\rangle *\left\langle a_{11}\right\rangle,\left\langle T_{2}, c_{11}\right\rangle=T_{2} \lambda\left\langle c_{11}\right\rangle$.
T_{n} is infinitely presented for $n>1$

As a corollary of the previous theorem we have
Corollary
$T_{2}=\left\langle a_{21}, a_{12}, b_{21}, b_{12}\right\rangle$ is defined by infinite set of relations

$$
\left[a_{21}, a_{12}\right]^{c_{11}^{k}}=\left[b_{21}, b_{12}\right]_{11}^{c_{11}^{k}}=1, \quad k \in \mathbb{Z},
$$

that are equivalent to

$$
\left[a_{21}^{c_{21}^{k}}, a_{12}^{c_{12}^{k}}\right]=\left[b_{21}^{c_{21}^{k}}, b_{12}^{c_{12}^{k}}\right]=1, \quad k \in \mathbb{Z} .
$$

Groups $V P_{4}$ as HNN-extension

Proposition [V. B., R. Mikhailov, J. Wu, 2018]

$V P_{4}$ is the HNN-extension with the base group

$$
G_{4}=\left\langle c_{11}, a_{21}, a_{12}, c_{21}, c_{12}, a_{31}, a_{22}, a_{13}, b_{31}, b_{22}, b_{13}\right\rangle
$$

associated subgroups A and B and stable letter a_{11}, G_{4} is defined by the following relations (here $\varepsilon= \pm 1$):

1) conjugations by c_{11}^{ε}

$$
\begin{gathered}
a_{21}^{c_{11}^{\varepsilon}}=a_{21}, \quad a_{12}^{c_{11}^{\varepsilon}}=a_{12}^{c_{12}^{\varepsilon} c_{21}^{-\varepsilon}}, \quad c_{21}^{c_{11}^{\varepsilon}}=c_{21}, \quad c_{12}^{c_{11}^{\varepsilon}}=c_{12}^{c_{21}^{-\varepsilon}}, \\
a_{31}^{c_{11}^{\varepsilon}}=a_{31}, \quad a_{22}^{c_{11}^{\varepsilon}}=a_{22}, \quad a_{13}^{c_{11}^{\varepsilon}}=a_{13}^{c_{13}^{c_{13}^{\varepsilon} c_{22}^{-\varepsilon}}, \quad b_{31}^{c_{11}^{\varepsilon}}=b_{31},} \\
b_{22}^{c_{11}^{\varepsilon}}=b_{22}, \quad b_{13}^{c_{11}^{\varepsilon}}=b_{13}^{c_{13}^{\varepsilon} c_{22}^{-\varepsilon}},
\end{gathered}
$$

2) conjugations by c_{21}^{ε}

$$
\begin{gathered}
a_{31}^{c_{21}^{\varepsilon}}=a_{31}, \quad a_{22}^{c_{21}^{\varepsilon}}=a_{22}^{c_{22}^{\varepsilon} c_{31}^{-\varepsilon}}, \quad a_{13}^{c_{21}^{\varepsilon}}=a_{13}^{c_{22}^{\varepsilon} c_{31}^{-\varepsilon}}, \quad b_{31}^{c_{21}^{\varepsilon}}=b_{31}, \\
b_{22}^{c_{21}^{\varepsilon}}=b_{22}^{c_{22}^{\varepsilon} c_{31}^{-\varepsilon}}, \quad b_{13}^{c_{21}^{\varepsilon}}=b_{13}^{c_{22}^{\varepsilon} c_{31}^{-\varepsilon}},
\end{gathered}
$$

3) conjugations by c_{12}^{ε}

$$
\begin{array}{cl}
a_{31}^{c_{12}^{\varepsilon}}=a_{31}, \quad a_{13}^{c_{12}^{\varepsilon}}=a_{13}^{c_{13}^{\varepsilon} c_{31}^{-\varepsilon}}, \quad b_{31}^{c_{12}^{\varepsilon}}=b_{31}, \quad b_{13}^{c_{12}^{\varepsilon}}=b_{13}^{c_{13}^{\varepsilon} c_{31}^{-\varepsilon}}, \\
a_{22}^{c_{12}^{-1}}=a_{13}^{c_{13}^{-1} c_{31}} a_{13}^{-c_{13}^{-1} c_{22}} a_{22}\left[c_{21}, c_{12}^{-1}\right], & a_{22}^{c_{12}}=\left[c_{12}, c_{21}^{-1}\right] a_{13}^{-c_{13} c_{22}^{-1}} a_{22} a_{13}^{c_{13} c_{31}^{-1}}, \\
b_{22}^{c_{12}^{-1}}=b_{13}^{c_{13}^{-1} c_{31}} b_{22} b_{13}^{-c_{13}^{-1} c_{22}}\left[c_{21}, c_{12}^{-1}\right], & b_{22}^{c_{12}}=\left[c_{12}, c_{21}^{-1}\right] b_{22} b_{13}^{-c_{13} c_{22}^{-1}} b_{13}^{c_{13} c_{31}^{-1}} .
\end{array}
$$

4) commutativity relations

$$
\begin{gathered}
{\left[a_{21}, a_{12}\right]=\left[a_{31}, a_{22}\right]=\left[a_{31}, a_{13}\right]=\left[a_{22}, a_{13}\right]=1,} \\
{\left[c_{21} a_{21}^{-1}, c_{12} a_{21}^{-1}\right]=\left[b_{31}, b_{22}\right]=\left[b_{31}, b_{13}\right]=\left[b_{22}, b_{13}\right]=1 .}
\end{gathered}
$$

Presentation of T_{3}

Theorem [V. B., R. Mikhailov, J. Wu, 2018]
The group

$$
T_{3}=\left\langle a_{31}, \quad a_{22}, \quad a_{13}, \quad b_{31}, \quad b_{22}, \quad b_{13}\right\rangle
$$

is defined by relations

$$
\begin{gathered}
{\left[a_{31}, a_{22}^{c_{22}^{m}} c_{31}^{-m}\right]=\left[a_{31}, a_{13}^{c_{13}^{k} c_{22}^{m-k} c_{31}^{-m}}\right]=\left[a_{22}^{c_{22}^{m} c_{31}^{-m}}, a_{13}^{c_{13}^{k} c_{22}^{m-k} c_{31}^{-m}}\right]=1,} \\
{\left[b_{31}, b_{22}^{c_{22}^{m} c_{31}^{-m}}\right]=\left[b_{31}, b_{13}^{\left.c_{13}^{k} c_{22}^{m-k} c_{31}^{-m}\right]=\left[b_{22}^{c_{22}^{m} c_{31}^{-m}}, b_{13}^{c_{13}^{k} c_{22}^{m-k} c_{31}^{-m}}\right]=1 .} .\right.}
\end{gathered}
$$

where $k, m \in \mathbb{Z}$.

Let $n \geq 4$ and $\mathcal{R}^{V}(n)$ denote the defining relations of $V P_{n}$. By applying the homomorphism $s_{t}: V P_{n} \rightarrow V P_{n+1}$ to $\mathcal{R}^{V}(n)$, we have the following relations

$$
\begin{aligned}
& s_{t}\left(\lambda_{i j}\right) s_{t}\left(\lambda_{k l}\right)=s_{t}\left(\lambda_{k l}\right) s_{t}\left(\lambda_{i j}\right) \\
& s_{t}\left(\lambda_{k i}\right) s_{t}\left(\lambda_{k j}\right) s_{t}\left(\lambda_{i j}\right)=s_{t}\left(\lambda_{i j}\right) s_{t}\left(\lambda_{k j}\right) s_{t}\left(\lambda_{k i}\right)
\end{aligned}
$$

in $V P_{n+1}$ for $1 \leq i, j, k, l \leq n$ with distinct letters standing for distinct indices, which is denoted as $s_{t}\left(\mathcal{R}^{V}(n)\right)$.

Theorem [V. B., R. Mikhailov, J. Wu, 2018]
Let $n \geq 4$. Consider $V P_{n}$ as a subgroup of $V P_{n+1}$ by adding a trivial strand in the end. Then

$$
\mathcal{R}^{V}(n) \cup \bigcup_{i=0}^{n-1} s_{i}\left(\mathcal{R}^{V}(n)\right)
$$

gives the full set of the defining relations for $V P_{n+1}$.

Presentation of T_{n}

Corollary [V. B., R. Mikhailov, J. Wu, 2018]
The group $T_{n}, n \geq 2$ is generated by elements

$$
a_{i, n+1-i}, \quad b_{i, n+1-i}, \quad i=1,2, \ldots, n
$$

and is defined by relations

$$
\begin{aligned}
& {\left[a_{i, n+1-i}, a_{j, n+1-j}\right]^{c_{11}^{k_{1}} c_{21}^{k_{2}} \ldots c_{n-1,1}^{k_{n-1}}},} \\
& {\left[b_{i, n+1-i}, b_{j, n+1-j}\right]^{c_{11}^{k_{1}} c_{21}^{k_{2}} \ldots c_{n-1,1}^{k_{n-1}}},}
\end{aligned}
$$

where $1 \leq i \neq j \leq n, k_{l} \in \mathbb{Z}$.

Thank you!

