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Simplicial set and simplicial group

A sequence of sets X = {Xn}n≥0 is called a simplicial set if there are
face maps:

di : Xn −→ Xn−1 for 0 ≤ i ≤ n
and degeneracy maps

si : Xn −→ Xn+1 for 0 ≤ i ≤ n.

This maps satisfy the following simplicial identities:

didj = dj−1di if i < j,
sisj = sj+1si if i ≤ j,
disj = sj−1di if i < j,
djsj = id = dj+1sj ,
disj = sjdi−1 if i > j + 1.

V. Bardakov (Sobolev Institute of Mathematics) Simplicial structure December, 2018 2 / 32



A simplicial group G = {Gn}n≥0 consists of a simplicial set G for which
each Gn is a group and each di and si is a group homomorphism.

Examples:

1) Simplicial circle S1
∗ : Let S1 = ∆[1]/∂∆[1] be a circle. Define

S1
0 = {∗}, S1

1 = {∗, σ}, S1
2 = {∗, s0σ, s1σ}, . . . , S1

n = {∗, x0, . . . , xn−1}, . . . ,

where xi = sn−1 . . . ŝi . . . s0σ. It is not difficult to check that S1
∗ is a

simplicial set.

2) Free simplicial group F∗: Let F0 = {e} be the trivial group, F1 = 〈y〉
be the infinite cyclic group, F2 = 〈s0y, s1y〉 be the free group of rank 2,
Fn = 〈y0, . . . , yn−1}, where yi = sn−1 . . . ŝi . . . s0y. It is not difficult to
check that F∗ is a simplicial group.

V. Bardakov (Sobolev Institute of Mathematics) Simplicial structure December, 2018 3 / 32



Milnor’s free simplicial group

Milnor’s F [S1]-construction gives a possibility to define the homotopy
groups πn(S2) combinatorially, in terms of free groups. The
F [S1]-construction is a free simplicial group with the following terms

F [S1]0 = 1,
F [S1]1 = F (σ),
F [S1]2 = F (s0σ, s1σ),
F [S1]3 = F (sisjσ | 0 ≤ j ≤ i ≤ 2),
. . .

The face and degeneracy maps are determined with respect to the
standard simplicial identities for these simplicial groups.
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Milnor’s theorem

Milnor proved that the geometric realization of F [S1] is weakly
homotopically equivalent to the loop space ΩS2 = ΩΣS1. Hence, the
homotopy groups of the Moore complex of F [S1] are naturally
isomorphic to the homotopy groups πn(S2):

πn(F [S1]) = Zn(F [S1])/Bn(F [S1]) ' πn+1(S
2).
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Moore complex

The Moore complex NG = {NnG}n≥0 of a simplicial group G is defined
by

NnG =

n⋂
i=1

Ker(di : Gn −→ Gn−1).

Then d0(NnG) ⊆ Nn−1G and NG with d0 is a chain complex of groups.
An element in

BnG = d0(Nn+1G)

is called a Moore boundary and an element in

ZnG = Ker(d0 : NnG −→ Nn−1G)

is called a Moore cycle. The nth homotopy group πn(G) is defined to
be the group

πn(G) = Hn(NG) = ZnG/BnG.
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Braid groups

Braid group Bn on n ≥ 2 strands is generated by σ1, σ2, . . . , σn−1 and
is defined by relations

σiσi+1σi = σi+1σiσi+1 for i = 1, 2, . . . , n− 2,

σiσj = σjσi for |i− j| ≥ 2.
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Geometric interpretation

The generators σi have the following geometric interpretation:

1 i− 1 i i+ 1 ni+ 2

σi
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Pure braid group

There is a homomorphism ϕ : Bn −→ Sn, ϕ(σi) = (i, i+ 1),
i = 1, 2, . . . , n− 1. Its kernel Ker(ϕ) is called the pure braid group and
is denoted by Pn. Note that P2 is infinite cyclic group.

Markov proved that Pn is a semi-direct product of free groups:

Pn = Un h Un−1 h . . .h U2,

where Uk ' Fk−1, k = 2, 3, . . . , n, is a free group of rank k.
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Pure braid groups as simplicial group

F. Cohen and J. Wu (2011) defined simplicial group AP∗ = {APn}n≥0,
where APn = Pn+1 with face and degeneracy maps corresponding to
deleting and doubling of strands, respectively. They proved that AP∗ is
contractible (hence πn(AP∗) is trivial group for all n).

V. Bardakov (Sobolev Institute of Mathematics) Simplicial structure December, 2018 10 / 32



Cabling of the pure braids

On the other side, F. Cohen and J. Wu constructed an injective
canonical map of simplicial groups

Θ : F [S1] −→ AP∗,

This leads to the conclusion that the cokernel of Θ is homotopy
equivalent to S2. Hence, it is possible to present generators of πn(S2)
by pure braids.
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Simplicial subgroup T c
∗

Denote c11 = σ−2
1 ∈ P2 and T c

∗ be a simplicial subgroup of AP∗ that is
generated by c11, i.e.

T0 = 1, T1 = 〈c11〉, T2 = 〈c21, c12〉, T3 = 〈c31, c22, c13〉, . . . ,

where

c21 = s0c11, c12 = s1c11, c31 = s1s0c11, c22 = s2s0c11, c13 = s2s1c11, . . .

Then Θ(F [S1]) = T c
∗ .
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Presentation of Pn in cabled generators

It is not difficult to see that

Pn = 〈T2, T3, . . . , Tn−1〉.

Hence, Pn is generated by elements that come from c11 with the
cabling operations.

Question

What is a set of defining relations of Pn into the generators cij?
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A set of defining relations for P4

Proposition [V. B, R. Mikhailov, J. Wu, 2018]

The group P4 is generated by elements

c11, c21, c12, c31, c22, c13

and is defined by relations (where ε = ±1):

c
cε11
21 = c21, c

cε11
12 = c

c−ε
21
12 , c

cε11
31 = c31, c

cε11
22 = c22, c

cε11
13 = c

c−ε
22
13 ,

c
cε21
31 = c31, c

cε21
22 = c

c−ε
31
22 , c

cε21
13 = c

cε22c
−ε
31

13 ,

c
cε12
31 = c31, c

cε12
13 = c

c−ε
31
13 .

c
c−1
12
22 = cc3113 c

−c22
13 c22[c

2
21, c

−1
12 ], cc1222 = [c12, c

−2
21 ] c

−c−2
22

13 c22 c
c−1
31
13 .
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Virtual braid group

The virtual braid group V Bn was introduced by L. Kauffman (1996).

V Bn is generated by the classical braid group Bn = 〈σ1, . . . , σn−1〉 and
the permutation group Sn = 〈ρ1, . . . , ρn−1〉. Generators
ρi, i = 1, . . . , n− 1, satisfy the following relations:

ρ2i = 1 for i = 1, 2, . . . , n− 1, (1)

ρiρj = ρjρi for |i− j| ≥ 2, (2)

ρiρi+1ρi = ρi+1ρiρi+1 for i = 1, 2 . . . , n− 2. (3)

Other defining relations of the group V Bn are mixed and they are as
follows

σiρj = ρjσi for |i− j| ≥ 2, (4)

ρiρi+1σi = σi+1ρiρi+1 for i = 1, 2, . . . , n− 2. (5)
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Virtual pure braid group

The generators ρi have the following diagram

1 i− 1 i i+ 1 ni+ 2

ρi

As in classical case there is a homomorphism

ϕ : V Bn −→ Sn, ϕ(σi) = ϕ(ρi) = ρi, i = 1, 2, . . . , n− 1.

Its kernel Ker(ϕ) is called the virtual pure braid group and is denoted
by V Pn.
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Define the following elements in V Bn:

λi,i+1 = ρi σ
−1
i , λi+1,i = ρi λi,i+1 ρi = σ−1

i ρi, i = 1, 2, . . . , n− 1,

λij = ρj−1 ρj−2 . . . ρi+1 λi,i+1 ρi+1 . . . ρj−2 ρj−1,

λji = ρj−1 ρj−2 . . . ρi+1 λi+1,i ρi+1 . . . ρj−2 ρj−1, 1 ≤ i < j − 1 ≤ n− 1.

Theorem [V. B, 2004]

The group V Pn (n ≥ 2) admits a presentation with the generators
λij , 1 ≤ i 6= j ≤ n, and the following relations:

λijλkl = λklλij ,

λkiλkjλij = λijλkjλki,

where distinct letters stand for distinct indices.
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Group V P2

Note that V P2 = 〈λ12, λ21〉 is 2-generated free group. The generators
have geometric interpretation:

1 12 2

λ12 = ρ1σ
−1
1

1 12 2

λ21 = σ−1
1 ρ1
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Cabling of virtual pure braids

Let V P∗ = {V Pn}n≥1 be the set of virtual pure braid groups.
Define the face map:

di : V Pn −→ V Pn−1, i = 1, 2, . . . , n,

what is the deleting of the ith strand.

Example:

1 2 3 1 2 3 1 2

>

d1

β βd1
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Cabling of virtual pure braids

Define the degeneracy map:

si : V Pn −→ V Pn+1, i = 1, 2, . . . , n,

what is the doubling of the ith strand.

Example:

1 2 1 2 3

>

1 2 3 4

βs2

s2

3

β
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It is not difficult to see that we have the simplicial group

V AP∗ : · · ·� V AP2 � V AP1 � V AP0,

where V APn = V Pn+1.

Proposition

V AP∗ is contractible, i.e. πn(V AP∗) = 0 for all n ≥ 1.
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Simplicial subgroup T∗

Define a simplicial group T∗ = {Tn}n≥0 that is a simplitial subgroup of
V P∗ and is generated by λ12 and λ21:

T∗ : · · ·� T2 � T1 � T0,

where Tn, n = 0, 1, . . ., is defined by the following manner

T0 = {e}, T1 = V P2, Tn+1 = 〈s1(Tn), s2(Tn), . . . , sn+1(Tn)〉.

If we let a11 = λ12, b11 = λ21, and

aij = sn . . . ŝi . . . s1a11, bij = sn . . . ŝi . . . s1b11, i+ j = n+ 1.

Then
Tn = 〈akl, bkl : k + l = n+ 1〉, n = 1, 2, . . .
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Presentation of T∗

Problem

Find a set of defining relations for Tn, n = 2, 3, . . .
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Decomposition of V P3

Put cij = bijaij . It is not difficult to see that cij ∈ Pi+j .

Theorem [V. B., R. Mikhailov, V. V. Vershinin and J. Wu, 2016]

The group V P3 is generated by elements

a11, c11, a21, a12, c21, c12

and is defined by relations

[a21, a12] = [c21a
−1
21 , c12a

−1
12 ] = 1,

ac1121 = a21, cc1121 = c21, ac1112 = a
c12c

−1
21

12 , cc1112 = c
c−1
21
12 ,

i. e. V P3 = 〈T2, c11〉 ∗ 〈a11〉, 〈T2, c11〉 = T2 h 〈c11〉.
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Tn is infinitely presented for n > 1

As a corollary of the previous theorem we have

Corollary

T2 = 〈a21, a12, b21, b12〉 is defined by infinite set of relations

[a21, a12]
ck11 = [b21, b12]

ck11 = 1, k ∈ Z,

that are equivalent to

[a
ck21
21 , a

ck12
12 ] = [b

ck21
21 , b

ck12
12 ] = 1, k ∈ Z.
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Groups V P4 as HNN-extension

Proposition [V. B., R. Mikhailov, J. Wu, 2018]

V P4 is the HNN-extension with the base group

G4 = 〈c11, a21, a12, c21, c12, a31, a22, a13, b31, b22, b13〉

associated subgroups A and B and stable letter a11, G4 is defined by
the following relations (here ε = ±1):
1) conjugations by cε11

a
cε11
21 = a21, a

cε11
12 = a

cε12c
−ε
21

12 , c
cε11
21 = c21, c

cε11
12 = c

c−ε
21
12 ,

a
cε11
31 = a31, a

cε11
22 = a22, a

cε11
13 = a

cε13c
−ε
22

13 , b
cε11
31 = b31,

b
cε11
22 = b22, b

cε11
13 = b

cε13c
−ε
22

13 ,

V. Bardakov (Sobolev Institute of Mathematics) Simplicial structure December, 2018 26 / 32



2) conjugations by cε21

a
cε21
31 = a31, a

cε21
22 = a

cε22c
−ε
31

22 , a
cε21
13 = a

cε22c
−ε
31

13 , b
cε21
31 = b31,

b
cε21
22 = b

cε22c
−ε
31

22 , b
cε21
13 = b

cε22c
−ε
31

13 ,

3) conjugations by cε12

a
cε12
31 = a31, a

cε12
13 = a

cε13c
−ε
31

13 , b
cε12
31 = b31, b

cε12
13 = b

cε13c
−ε
31

13 ,

a
c−1
12
22 = a

c−1
13 c31
13 a

−c−1
13 c22

13 a22[c21, c
−1
12 ], ac1222 = [c12, c

−1
21 ]a

−c13c
−1
22

13 a22a
c13c

−1
31

13 ,

b
c−1
12
22 = b

c−1
13 c31
13 b22b

−c−1
13 c22

13 [c21, c
−1
12 ], bc1222 = [c12, c

−1
21 ]b22b

−c13c
−1
22

13 b
c13c

−1
31

13 .

4) commutativity relations

[a21, a12] = [a31, a22] = [a31, a13] = [a22, a13] = 1,

[c21a
−1
21 , c12a

−1
21 ] = [b31, b22] = [b31, b13] = [b22, b13] = 1.
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Presentation of T3

Theorem [V. B., R. Mikhailov, J. Wu, 2018]

The group
T3 = 〈a31, a22, a13, b31, b22, b13〉

is defined by relations

[a31, a
cm22c

−m
31

22 ] = [a31, a
ck13c

m−k
22 c−m

31
13 ] = [a

cm22c
−m
31

22 , a
ck13c

m−k
22 c−m

31
13 ] = 1,

[b31, b
cm22c

−m
31

22 ] = [b31, b
ck13c

m−k
22 c−m

31
13 ] = [b

cm22c
−m
31

22 , b
ck13c

m−k
22 c−m

31
13 ] = 1.

where k,m ∈ Z.
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Lifting defining relations of V Pn to V Pn+1

Let n ≥ 4 and RV (n) denote the defining relations of V Pn. By
applying the homomorphism st : V Pn → V Pn+1 to RV (n) , we have the
following relations

st(λij)st(λkl) = st(λkl)st(λij),

st(λki)st(λkj)st(λij) = st(λij)st(λkj)st(λki)

in V Pn+1 for 1 ≤ i, j, k, l ≤ n with distinct letters standing for distinct
indices, which is denoted as st(RV (n)).
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Lifting theorem

Theorem [V. B., R. Mikhailov, J. Wu, 2018]

Let n ≥ 4. Consider V Pn as a subgroup of V Pn+1 by adding a trivial
strand in the end. Then

RV (n) ∪
n−1⋃
i=0

si(RV (n))

gives the full set of the defining relations for V Pn+1.
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Presentation of Tn

Corollary [V. B., R. Mikhailov, J. Wu, 2018]

The group Tn, n ≥ 2 is generated by elements

ai,n+1−i, bi,n+1−i, i = 1, 2, . . . , n,

and is defined by relations

[ai,n+1−i, aj,n+1−j ]
c
k1
11 c

k2
21 ...c

kn−1
n−1,1 ,

[bi,n+1−i, bj,n+1−j ]
c
k1
11 c

k2
21 ...c

kn−1
n−1,1 ,

where 1 ≤ i 6= j ≤ n, kl ∈ Z.
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Thank you!
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