Simplicial structure on the groups of virtual pure braids

Valeriy Bardakov

Sobolev Institute of Mathematics

Joint work with R. Mikhailov and J. Wu

Tomsk December, 2018

V. Bardakov (Sobolev Institute of Mathemat

Simplicial structure

A sequence of sets $\mathcal{X} = \{X_n\}_{n \ge 0}$ is called a simplicial set if there are face maps:

$$d_i: X_n \longrightarrow X_{n-1}$$
 for $0 \le i \le n$

and degeneracy maps

$$s_i: X_n \longrightarrow X_{n+1} \text{ for } 0 \le i \le n.$$

This maps satisfy the following simplicial identities:

$$\begin{array}{lll} d_i d_j = d_{j-1} d_i & \text{if} & i < j, \\ s_i s_j = s_{j+1} s_i & \text{if} & i \leq j, \\ d_i s_j = s_{j-1} d_i & \text{if} & i < j, \\ d_j s_j = i d = d_{j+1} s_j, \\ d_i s_j = s_j d_{i-1} & \text{if} & i > j+1. \end{array}$$

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

A simplicial group $\mathcal{G} = \{G_n\}_{n \geq 0}$ consists of a simplicial set \mathcal{G} for which each G_n is a group and each d_i and s_i is a group homomorphism.

Examples:

1) Simplicial circle S^1_* : Let $S^1 = \Delta[1]/\partial \Delta[1]$ be a circle. Define

$$S_0^1 = \{*\}, \ S_1^1 = \{*, \sigma\}, \ S_2^1 = \{*, s_0\sigma, s_1\sigma\}, \dots, S_n^1 = \{*, x_0, \dots, x_{n-1}\}, \dots$$

where $x_i = s_{n-1} \dots \hat{s}_i \dots s_0 \sigma$. It is not difficult to check that S^1_* is a simplicial set.

2) Free simplicial group F_* : Let $F_0 = \{e\}$ be the trivial group, $F_1 = \langle y \rangle$ be the infinite cyclic group, $F_2 = \langle s_0y, s_1y \rangle$ be the free group of rank 2, $F_n = \langle y_0, \ldots, y_{n-1} \rangle$, where $y_i = s_{n-1} \ldots \hat{s_i} \ldots s_0 y$. It is not difficult to check that F_* is a simplicial group.

Milnor's $F[S^1]$ -construction gives a possibility to define the homotopy groups $\pi_n(S^2)$ combinatorially, in terms of free groups. The $F[S^1]$ -construction is a free simplicial group with the following terms

$$F[S^{1}]_{0} = 1,$$

$$F[S^{1}]_{1} = F(\sigma),$$

$$F[S^{1}]_{2} = F(s_{0}\sigma, s_{1}\sigma),$$

$$F[S^{1}]_{3} = F(s_{i}s_{j}\sigma \mid 0 \le j \le i \le 2),$$

...

The face and degeneracy maps are determined with respect to the standard simplicial identities for these simplicial groups.

Milnor proved that the geometric realization of $F[S^1]$ is weakly homotopically equivalent to the loop space $\Omega S^2 = \Omega \Sigma S^1$. Hence, the homotopy groups of the Moore complex of $F[S^1]$ are naturally isomorphic to the homotopy groups $\pi_n(S^2)$:

$$\pi_n(F[S^1]) = Z_n(F[S^1]) / B_n(F[S^1]) \simeq \pi_{n+1}(S^2).$$

The Moore complex $N\mathcal{G} = \{N_n\mathcal{G}\}_{n\geq 0}$ of a simplicial group \mathcal{G} is defined by

$$N_n \mathcal{G} = \bigcap_{i=1}^n \operatorname{Ker}(d_i : G_n \longrightarrow G_{n-1}).$$

Then $d_0(N_n\mathcal{G}) \subseteq N_{n-1}\mathcal{G}$ and $N\mathcal{G}$ with d_0 is a chain complex of groups. An element in

$$B_n \mathcal{G} = d_0(N_{n+1}\mathcal{G})$$

is called a Moore boundary and an element in

$$\mathbf{Z}_n \mathcal{G} = \mathrm{Ker}(d_0 : N_n \mathcal{G} \longrightarrow N_{n-1} \mathcal{G})$$

is called a Moore cycle. The *n*th homotopy group $\pi_n(\mathcal{G})$ is defined to be the group

$$\pi_n(\mathcal{G}) = H_n(N\mathcal{G}) = \mathbf{Z}_n \mathcal{G} / \mathbf{B}_n \mathcal{G}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト

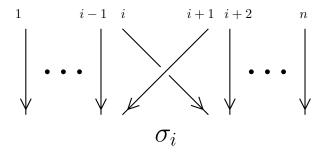
Braid group B_n on $n \ge 2$ strands is generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ and is defined by relations

$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \qquad \text{for } i = 1, 2, \dots, n-2,$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i \qquad \text{for } |i-j| \ge 2.$$

-

The generators σ_i have the following geometric interpretation:



There is a homomorphism $\varphi: B_n \longrightarrow S_n$, $\varphi(\sigma_i) = (i, i+1)$, $i = 1, 2, \ldots, n-1$. Its kernel Ker (φ) is called the pure braid group and is denoted by P_n . Note that P_2 is infinite cyclic group.

Markov proved that P_n is a semi-direct product of free groups:

$$P_n = U_n \setminus U_{n-1} \setminus \ldots \setminus U_2,$$

where $U_k \simeq F_{k-1}$, k = 2, 3, ..., n, is a free group of rank k.

F. Cohen and J. Wu (2011) defined simplicial group $AP_* = \{AP_n\}_{n\geq 0}$, where $AP_n = P_{n+1}$ with face and degeneracy maps corresponding to deleting and doubling of strands, respectively. They proved that AP_* is contractible (hence $\pi_n(AP_*)$ is trivial group for all n). On the other side, F. Cohen and J. Wu constructed an injective canonical map of simplicial groups

$$\Theta: F[S^1] \longrightarrow AP_*,$$

This leads to the conclusion that the cokernel of Θ is homotopy equivalent to S^2 . Hence, it is possible to present generators of $\pi_n(S^2)$ by pure braids. Denote $c_{11} = \sigma_1^{-2} \in P_2$ and T_*^c be a simplicial subgroup of AP_* that is generated by c_{11} , i.e.

$$T_0 = 1, \ T_1 = \langle c_{11} \rangle, \ T_2 = \langle c_{21}, c_{12} \rangle, \ T_3 = \langle c_{31}, c_{22}, c_{13} \rangle, \ \dots,$$

where

 $c_{21} = s_0 c_{11}, \ c_{12} = s_1 c_{11}, \ c_{31} = s_1 s_0 c_{11}, \ c_{22} = s_2 s_0 c_{11}, \ c_{13} = s_2 s_1 c_{11}, \dots$ Then $\Theta(F[S^1]) = T^c_*.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

It is not difficult to see that

$$P_n = \langle T_2, T_3, \dots, T_{n-1} \rangle.$$

Hence, P_n is generated by elements that come from c_{11} with the cabling operations.

Question

What is a set of defining relations of P_n into the generators c_{ij} ?

Image: 1

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Proposition [V. B, R. Mikhailov, J. Wu, 2018] The group P_4 is generated by elements

$$c_{11}, c_{21}, c_{12}, c_{31}, c_{22}, c_{13}$$

and is defined by relations (where $\varepsilon = \pm 1$):

$$\begin{aligned} c_{21}^{c_{11}^{\varepsilon}} &= c_{21}, \quad c_{12}^{c_{11}^{\varepsilon}} &= c_{12}^{c_{21}^{-\varepsilon}}, \quad c_{31}^{c_{11}^{\varepsilon}} &= c_{31}, \quad c_{22}^{c_{11}^{\varepsilon}} &= c_{22}, \quad c_{13}^{c_{11}^{\varepsilon}} &= c_{13}^{c_{22}^{-\varepsilon}}, \\ c_{31}^{c_{21}^{\varepsilon}} &= c_{31}, \quad c_{22}^{c_{21}^{\varepsilon}} &= c_{22}^{c_{31}^{-\varepsilon}}, \quad c_{13}^{c_{21}^{\varepsilon}} &= c_{13}^{c_{22}^{-\varepsilon}}, \\ c_{31}^{c_{12}^{\varepsilon}} &= c_{31}, \quad c_{13}^{c_{12}^{\varepsilon}} &= c_{13}^{c_{31}^{-\varepsilon}}, \\ c_{22}^{c_{12}^{-1}} &= c_{13}^{c_{31}} c_{13}^{-c_{22}} c_{22} [c_{21}^{2}, c_{12}^{-1}], \quad c_{22}^{c_{12}^{2}} &= [c_{12}, c_{21}^{-2}] c_{13}^{-c_{22}^{-2}} c_{22} c_{13}^{c_{31}^{-1}}. \end{aligned}$$

The virtual braid group VB_n was introduced by L. Kauffman (1996).

 VB_n is generated by the classical braid group $B_n = \langle \sigma_1, \ldots, \sigma_{n-1} \rangle$ and the permutation group $S_n = \langle \rho_1, \ldots, \rho_{n-1} \rangle$. Generators $\rho_i, i = 1, \ldots, n-1$, satisfy the following relations:

$$\rho_i^2 = 1$$
 for $i = 1, 2, \dots, n-1$, (1)

$$\rho_i \rho_j = \rho_j \rho_i \qquad \qquad \text{for } |i - j| \ge 2, \tag{2}$$

$$\rho_i \rho_{i+1} \rho_i = \rho_{i+1} \rho_i \rho_{i+1}$$
 for $i = 1, 2..., n-2.$ (3)

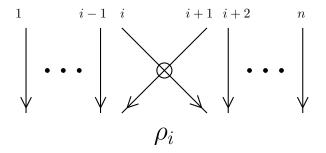
Other defining relations of the group VB_n are mixed and they are as follows

> for |i - j| > 2, (4) $\sigma_i \rho_i = \rho_i \sigma_i$

$$\rho_i \rho_{i+1} \sigma_i = \sigma_{i+1} \rho_i \rho_{i+1} \qquad \text{for } i = 1, 2, \dots, n-2.$$
(5)

Virtual pure braid group

The generators ρ_i have the following diagram



As in classical case there is a homomorphism

$$\varphi: VB_n \longrightarrow S_n, \ \varphi(\sigma_i) = \varphi(\rho_i) = \rho_i, \ i = 1, 2, \dots, n-1.$$

Its kernel $\text{Ker}(\varphi)$ is called the virtual pure braid group and is denoted by VP_n . Define the following elements in VB_n :

$$\lambda_{i,i+1} = \rho_i \,\sigma_i^{-1}, \quad \lambda_{i+1,i} = \rho_i \,\lambda_{i,i+1} \,\rho_i = \sigma_i^{-1} \,\rho_i, \quad i = 1, 2, \dots, n-1,$$
$$\lambda_{ij} = \rho_{j-1} \,\rho_{j-2} \dots \rho_{i+1} \,\lambda_{i,i+1} \,\rho_{i+1} \dots \rho_{j-2} \,\rho_{j-1},$$
$$\lambda_{ji} = \rho_{j-1} \,\rho_{j-2} \dots \rho_{i+1} \,\lambda_{i+1,i} \,\rho_{i+1} \dots \rho_{j-2} \,\rho_{j-1}, \quad 1 \le i < j-1 \le n-1.$$

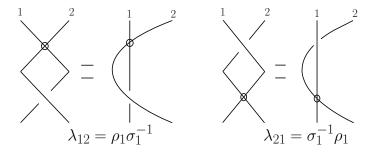
Theorem [V. B, 2004]

The group VP_n $(n \ge 2)$ admits a presentation with the generators λ_{ij} , $1 \le i \ne j \le n$, and the following relations:

$$\lambda_{ij}\lambda_{kl} = \lambda_{kl}\lambda_{ij},$$
$$\lambda_{ki}\lambda_{kj}\lambda_{ij} = \lambda_{ij}\lambda_{kj}\lambda_{ki},$$

where distinct letters stand for distinct indices.

Note that $VP_2 = \langle \lambda_{12}, \lambda_{21} \rangle$ is 2-generated free group. The generators have geometric interpretation:

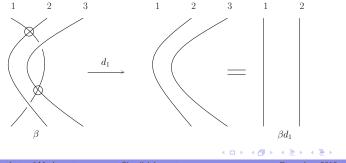


Let $VP_* = \{VP_n\}_{n \ge 1}$ be the set of virtual pure braid groups. Define the face map:

$$d_i: VP_n \longrightarrow VP_{n-1}, \quad i = 1, 2, \dots, n,$$

what is the deleting of the ith strand.

Example:

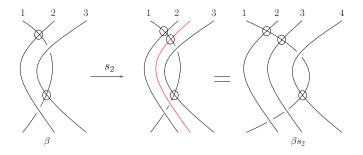


Define the degeneracy map:

$$s_i: VP_n \longrightarrow VP_{n+1}, i = 1, 2, \dots, n,$$

what is the doubling of the *i*th strand.

Example:



It is not difficult to see that we have the simplicial group

$$VAP_*$$
 : $\cdots \rightleftharpoons VAP_2 \rightleftharpoons VAP_1 \rightleftharpoons VAP_0$,

where $VAP_n = VP_{n+1}$.

Proposition

 VAP_* is contractible, i.e. $\pi_n(VAP_*) = 0$ for all $n \ge 1$.

프 🕨 🛛 프

A D > A B > A

Define a simplicial group $T_* = \{T_n\}_{n\geq 0}$ that is a simplifial subgroup of VP_* and is generated by λ_{12} and λ_{21} :

$$T_*$$
 : $\cdots \rightleftharpoons T_2 \rightleftharpoons T_1 \rightleftharpoons T_0$,

where T_n , n = 0, 1, ..., is defined by the following manner

$$T_0 = \{e\}, T_1 = VP_2, T_{n+1} = \langle s_1(T_n), s_2(T_n), \dots, s_{n+1}(T_n) \rangle.$$

If we let $a_{11} = \lambda_{12}, b_{11} = \lambda_{21}$, and

$$a_{ij} = s_n \dots \hat{s}_i \dots s_1 a_{11}, \quad b_{ij} = s_n \dots \hat{s}_i \dots s_1 b_{11}, \quad i+j = n+1.$$

Then

$$T_n = \langle a_{kl}, b_{kl} : k+l = n+1 \rangle, \quad n = 1, 2, \dots$$

Problem

Find a set of defining relations for T_n , n = 2, 3, ...

V. Bardakov (Sobolev Institute of Mathemat

æ

イロト イヨト イヨト イヨト

Put $c_{ij} = b_{ij}a_{ij}$. It is not difficult to see that $c_{ij} \in P_{i+j}$.

Theorem [V. B., R. Mikhailov, V. V. Vershinin and J. Wu, 2016] The group VP_3 is generated by elements

 $a_{11}, c_{11}, a_{21}, a_{12}, c_{21}, c_{12}$

and is defined by relations

$$[a_{21}, a_{12}] = [c_{21}a_{21}^{-1}, c_{12}a_{12}^{-1}] = 1,$$
$$a_{21}^{c_{11}} = a_{21}, \quad c_{21}^{c_{11}} = c_{21}, \quad a_{12}^{c_{11}} = a_{12}^{c_{12}c_{21}^{-1}}, \quad c_{12}^{c_{11}} = c_{12}^{c_{21}^{-1}},$$
$$i. e. \ VP_3 = \langle T_2, c_{11} \rangle * \langle a_{11} \rangle, \ \langle T_2, c_{11} \rangle = T_2 \leftthreetimes \langle c_{11} \rangle.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへの

As a corollary of the previous theorem we have

Corollary

 $T_2 = \langle a_{21}, a_{12}, b_{21}, b_{12} \rangle$ is defined by infinite set of relations

$$[a_{21}, a_{12}]^{c_{11}^k} = [b_{21}, b_{12}]^{c_{11}^k} = 1, \ k \in \mathbb{Z},$$

that are equivalent to

$$[a_{21}^{c_{21}^{k_1}}, a_{12}^{c_{12}^{k_1}}] = [b_{21}^{c_{21}^{k_1}}, b_{12}^{c_{12}^{k_1}}] = 1, \quad k \in \mathbb{Z}.$$

ъ

Proposition [V. B., R. Mikhailov, J. Wu, 2018]

 VP_4 is the HNN-extension with the base group

$$G_4 = \langle c_{11}, a_{21}, a_{12}, c_{21}, c_{12}, a_{31}, a_{22}, a_{13}, b_{31}, b_{22}, b_{13} \rangle$$

associated subgroups A and B and stable letter a_{11} , G_4 is defined by the following relations (here $\varepsilon = \pm 1$): 1) conjugations by c_{11}^{ε}

$$a_{21}^{c_{11}^{\epsilon}} = a_{21}, \quad a_{12}^{c_{11}^{\epsilon}} = a_{12}^{c_{12}^{\epsilon}c_{21}^{-\epsilon}}, \quad c_{21}^{c_{11}^{\epsilon}} = c_{21}, \quad c_{12}^{c_{11}^{\epsilon}} = c_{12}^{-\epsilon},$$

$$\begin{aligned} a_{31}^{c_{11}^{\varepsilon}} &= a_{31}, \quad a_{22}^{c_{11}^{\varepsilon}} &= a_{22}, \quad a_{13}^{c_{11}^{\varepsilon}} &= a_{13}^{c_{13}^{\varepsilon}c_{22}^{-\varepsilon}}, \quad b_{31}^{c_{11}^{\varepsilon}} &= b_{31}, \\ b_{22}^{c_{11}^{\varepsilon}} &= b_{22}, \quad b_{13}^{c_{13}^{\varepsilon}} &= b_{13}^{c_{13}^{\varepsilon}c_{22}^{-\varepsilon}}, \end{aligned}$$

э

イロト イヨト イヨト イヨト

2) conjugations by c_{21}^{ε}

$$\begin{aligned} a_{31}^{c_{21}^{\varepsilon}} &= a_{31}, \quad a_{22}^{c_{21}^{\varepsilon}} &= a_{22}^{c_{22}^{\varepsilon}c_{31}^{-\varepsilon}}, \quad a_{13}^{c_{21}^{\varepsilon}} &= a_{13}^{c_{22}^{\varepsilon}c_{31}^{-\varepsilon}}, \quad b_{31}^{c_{21}^{\varepsilon}} &= b_{31}, \\ b_{22}^{c_{21}^{\varepsilon}} &= b_{22}^{c_{22}^{\varepsilon}c_{31}^{-\varepsilon}}, \quad b_{13}^{c_{21}^{\varepsilon}} &= b_{13}^{c_{22}^{\varepsilon}c_{31}^{-\varepsilon}}, \end{aligned}$$

3) conjugations by c_{12}^{ε}

$$\begin{aligned} a_{31}^{c_{12}^{\varepsilon_{12}}} &= a_{31}, \quad a_{13}^{c_{12}^{\varepsilon_{12}}} = a_{13}^{c_{13}^{\varepsilon_{13}}c_{31}^{-\varepsilon_{1}}}, \quad b_{31}^{c_{12}^{\varepsilon_{12}}} = b_{31}, \quad b_{13}^{c_{12}^{\varepsilon_{12}}} = b_{13}^{c_{13}^{\varepsilon_{13}}c_{31}^{-\varepsilon_{1}}}, \\ a_{22}^{c_{12}^{-1}} &= a_{13}^{c_{13}^{-1}c_{31}}a_{13}^{-c_{13}^{-1}c_{22}}a_{22}[c_{21},c_{12}^{-1}], \quad a_{22}^{c_{12}} = [c_{12},c_{21}^{-1}]a_{13}^{-c_{13}c_{22}^{-1}}a_{22}a_{13}^{c_{13}c_{31}^{-1}}, \\ b_{22}^{c_{12}^{-1}} &= b_{13}^{c_{13}^{-1}c_{31}}b_{22}b_{13}^{-c_{13}^{-1}c_{22}}[c_{21},c_{12}^{-1}], \quad b_{22}^{c_{12}} = [c_{12},c_{21}^{-1}]b_{22}b_{13}^{-c_{13}c_{22}^{-1}}b_{13}^{c_{13}c_{31}^{-1}}. \end{aligned}$$

4) commutativity relations

$$[a_{21}, a_{12}] = [a_{31}, a_{22}] = [a_{31}, a_{13}] = [a_{22}, a_{13}] = 1,$$

$$[c_{21}a_{21}^{-1}, c_{12}a_{21}^{-1}] = [b_{31}, b_{22}] = [b_{31}, b_{13}] = [b_{22}, b_{13}] = 1.$$

A B > 4
 A

/ 32

æ

Theorem [V. B., R. Mikhailov, J. Wu, 2018]

The group

$$T_3 = \langle a_{31}, a_{22}, a_{13}, b_{31}, b_{22}, b_{13} \rangle$$

is defined by relations

$$\begin{split} & [a_{31}, a_{22}^{c_{22}^m c_{31}^{-m}}] = [a_{31}, a_{13}^{c_{13}^k c_{22}^{m-k} c_{31}^{-m}}] = [a_{22}^{c_{22}^m c_{31}^{-m}}, a_{13}^{c_{13}^k c_{22}^{m-k} c_{31}^{-m}}] = 1, \\ & [b_{31}, b_{22}^{c_{22}^m c_{31}^{-m}}] = [b_{31}, b_{13}^{c_{13}^k c_{22}^{m-k} c_{31}^{-m}}] = [b_{22}^{c_{22}^m c_{31}^{-m}}, b_{13}^{c_{13}^k c_{22}^{m-k} c_{31}^{-m}}] = 1. \\ & \text{where } k, m \in \mathbb{Z}. \end{split}$$

ж

イロト イヨト イヨト イヨト

Let $n \geq 4$ and $\mathcal{R}^{V}(n)$ denote the defining relations of VP_{n} . By applying the homomorphism $s_{t} \colon VP_{n} \to VP_{n+1}$ to $\mathcal{R}^{V}(n)$, we have the following relations

$$s_t(\lambda_{ij})s_t(\lambda_{kl}) = s_t(\lambda_{kl})s_t(\lambda_{ij}),$$

$$s_t(\lambda_{ki})s_t(\lambda_{kj})s_t(\lambda_{ij}) = s_t(\lambda_{ij})s_t(\lambda_{kj})s_t(\lambda_{ki})$$

in VP_{n+1} for $1 \leq i, j, k, l \leq n$ with distinct letters standing for distinct indices, which is denoted as $s_t(\mathcal{R}^V(n))$.

Theorem [V. B., R. Mikhailov, J. Wu, 2018]

Let $n \ge 4$. Consider VP_n as a subgroup of VP_{n+1} by adding a trivial strand in the end. Then

$$\mathcal{R}^V(n) \cup \bigcup_{i=0}^{n-1} s_i(\mathcal{R}^V(n))$$

gives the full set of the defining relations for VP_{n+1} .

イロト イヨト イヨト

Corollary [V. B., R. Mikhailov, J. Wu, 2018] The group T_n , $n \ge 2$ is generated by elements

$$a_{i,n+1-i}, b_{i,n+1-i}, i = 1, 2, \dots, n,$$

and is defined by relations

$$\begin{split} [a_{i,n+1-i}, a_{j,n+1-j}]^{c_{11}^{k_1}c_{21}^{k_2}...c_{n-1,1}^{k_{n-1}}}, \\ [b_{i,n+1-i}, b_{j,n+1-j}]^{c_{11}^{k_1}c_{21}^{k_2}...c_{n-1,1}^{k_{n-1}}}, \end{split}$$
 where $1 \le i \ne j \le n, \, k_l \in \mathbb{Z}.$

イロト イヨト イヨト

Thank you!

æ

(日) (四) (日) (日) (日)