Разложимость в произведениях топологических пространств

А. Е. Липин

ИММ УрО РАН

12 июня, 2025

Определение

Пространство X называют:

• κ -разложимым, если X возможно разбить на κ плотных множеств;

Определение

Пространство X называют:

- κ -разложимым, если X возможно разбить на κ плотных множеств;
- неразложимым, если X не 2-разложимо и не содержит изолированных точек;

Определение

Пространство X называют:

- κ -разложимым, если X возможно разбить на κ плотных множеств;
- неразложимым, если X не 2-разложимо и не содержит изолированных точек;

Hewitt, 1943; Katětov, 1947

Существует регулярное счетное неразложимое пространство.

Определение

Пространство X называют:

- κ -разложимым, если X возможно разбить на κ плотных множеств;
- неразложимым, если X не 2-разложимо и не содержит изолированных точек;
- ullet максимально разложимым, если оно $\Delta(X)$ -разложимо, где

$$\Delta(X) = \min\{|U| : U \neq \emptyset, U \text{ открыто в } X\}$$
 —

дисперсионный характер пространства X.

Определение

Пространство X называют:

- κ -разложимым, если X возможно разбить на κ плотных множеств;
- неразложимым, если X не 2-разложимо и не содержит изолированных точек;
- ullet максимально разложимым, если оно $\Delta(X)$ -разложимо, где

$$\Delta(X) = \min\{|U| : U \neq \emptyset, U \text{ открыто в } X\}$$
 —

дисперсионный характер пространства X.

Ceder, 1964

Метризуемые, компактные, линейно упорядоченные и многие другие пространства максимально разложимы.

Пусть $\kappa \leq \Delta(X)$ и (тихоновское) пространство X μ -разложимо для всех $\mu < \kappa$. Обязательно ли X κ -разложимо?

 \bullet нет, если $\kappa < \omega$ (van Douwen, 1993; Li Feng, 1997);

- ullet нет, если $\kappa < \omega$ (van Douwen, 1993; Li Feng, 1997);
- ullet да, если $\mathrm{cf}(\kappa)=\omega$ (Illanes; Bhaskara Rao, 1994);

- ullet нет, если $\kappa < \omega$ (van Douwen, 1993; Li Feng, 1997);
- \bullet да, если $\mathrm{cf}(\kappa) = \omega$ (Illanes; Bhaskara Rao, 1994);
- \bullet нет, если κ несчетный регулярный (Juhász, Soukup, Szentmiklóssy, 2008);

- ullet нет, если $\kappa < \omega$ (van Douwen, 1993; Li Feng, 1997);
- \bullet да, если $\mathrm{cf}(\kappa) = \omega$ (Illanes; Bhaskara Rao, 1994);
- \bullet нет, если κ несчетный регулярный (Juhász, Soukup, Szentmiklóssy, 2008);
- $\omega < \mathrm{cf}(\kappa) < \kappa$ открытый вопрос.

Бесконечное пространство X называют изодинным, если $|X| = \Delta(X)$.

Бесконечное пространство X называют изодинным, если $|X| = \Delta(X)$.

Исследование разложимости во многих классах пространств сводится к изодинным пространствам.

Бесконечное пространство X называют изодинным, если $|X| = \Delta(X)$.

Исследование разложимости во многих классах пространств сводится к изодинным пространствам.

• Если всякое непустое открытое подмножество пространства X содержит непустое κ -разложимое подпространство, то X κ -разложимо (Ceder, 1964).

Бесконечное пространство X называют изодинным, если $|X| = \Delta(X)$.

Исследование разложимости во многих классах пространств сводится к изодинным пространствам.

- Если всякое непустое открытое подмножество пространства X содержит непустое κ -разложимое подпространство, то X κ -разложимо (Ceder, 1964).
- Всякое непустое открытое множество содержит непустое открытое изодинное подпространство.

Пусть X и Y — пространства. Что можно сказать о разложимости произведения $X \times Y$?

Пусть X и Y — изодинные пространства. Что можно сказать о разложимости произведения $X \times Y$?

Пусть X и Y — изодинные пространства. Что можно сказать о разложимости произведения $X \times Y$? Что можно сказать о разложимости $X \times X$?

Пусть X и Y — изодинные пространства. Что можно сказать о разложимости произведения $X \times Y$? Что можно сказать о разложимости $X \times X$?

Малыхин, 1973

Квадрат изодинного пространства 2-разложим.

Пусть X и Y — изодинные пространства. Что можно сказать о разложимости произведения $X \times Y$? Что можно сказать о разложимости $X \times X$?

Малыхин, 1973

Квадрат изодинного пространства 2-разложим.

Доказательство.

Занумеруем $X = \{x_{\alpha} : \alpha < |X|\}$. Положим $A = \{(x_{\alpha}, x_{\beta}) : \alpha < \beta\}$ и $B = \{(x_{\alpha}, x_{\beta}) : \alpha > \beta\}$. Множества A и B плотные и не пересекаются.

Пусть X и Y — изодинные пространства. Что можно сказать о разложимости произведения $X \times Y$? Что можно сказать о разложимости $X \times X$?

Малыхин, 1973

Квадрат изодинного пространства 2-разложим.

Утверждение

Если X — изодинное пространство, то X^n по меньшей мере n!-разложимо.

О.И. Павлов, 2007, Open Problems in Topology II:

Вопрос

Существует ли T_1 (хаусдорфово, регулярное) изодинное пространство, квадрат которого не 3-разложим? Существует ли такое счетное пространство?

• (CH) Существует счетное T_1 -пространство без изолированных точек, квадрат которого не 4-разложим.

- (CH) Существует счетное T_1 -пространство без изолированных точек, квадрат которого не 4-разложим.
- Существует неразложимое изодинное T_1 -пространство, чей квадрат максимально разложим.

- (CH) Существует счетное T_1 -пространство без изолированных точек, квадрат которого не 4-разложим.
- Существует неразложимое изодинное T_1 -пространство, чей квадрат максимально разложим.
- Если есть измеримый кардинал, то есть и два изодинных T_1 -пространства, произведение которых неразложимо.

- (CH) Существует счетное T_1 -пространство без изолированных точек, квадрат которого не 4-разложим.
- Существует неразложимое изодинное T_1 -пространство, чей квадрат максимально разложим.
- Если есть измеримый кардинал, то есть и два изодинных T_1 -пространства, произведение которых неразложимо.
- ullet (GCH) Если X и Y изодинные и $|Y| = |X|^+$, то $X \times Y$ максимально разложимо.

- (CH) Существует счетное T_1 -пространство без изолированных точек, квадрат которого не 4-разложим.
- Существует неразложимое изодинное T_1 -пространство, чей квадрат максимально разложим.
- Если есть измеримый кардинал, то есть и два изодинных T_1 -пространства, произведение которых неразложимо.
- ullet (GCH) Если X и Y изодинные и $|Y| = |X|^+$, то $X \times Y$ максимально разложимо.
- (V=L+ нет больших кардиналов) Произведение любых двух плотных в себе пространств 2-разложимо (Малыхин, 1975).

Bešlagić, Levy, 1996

Следующие условия равносовместны:

- (1) существует два плотных в себе пространства с неразложимым произведением;
- (2) существует два плотных в себе тихоновских пространства с неразложимым произведением;
- (3) существует измеримый кардинал.

Juhász, Soukup, Szentmiklóssy, 2023:

Теорема

Если совместно существование n измеримых кардиналов, то совместно существование n+1 тихоновского плотного в себе пространства с неразложимым произведением.

Juhász, Soukup, Szentmiklóssy, 2023:

Теорема

Если совместно существование n измеримых кардиналов, то совместно существование n+1 тихоновского плотного в себе пространства с неразложимым произведением.

Теорема

Если совместно существование измеримого кардинала, то совместно существование монотонно нормального изодинного пространства мощности \aleph_{ω} , произведение которого с любым счетным пространством не ω_1 -разложимо.

Елькин, 1969

Бесконечное произведение неодноточечных пространств \mathfrak{c} -разложимо.

Квадрат хаусдорфова счетного плотного в себе пространства максимально разложим.

Квадрат хаусдорфова счетного плотного в себе пространства максимально разложим.

Следствие

Произведение двух и более хаусдорфовых сепарабельных плотных в себе пространств ω -разложимо.

Если $2^\kappa=\kappa^+$, X и Y — изодинные пространства, $\{|X|,\operatorname{cf}|X|\}\cap \{\kappa,\kappa^+\} \neq \emptyset$ и $\operatorname{cf}|Y|=\kappa^+$, то пространство $X\times Y$ κ^+ -разложимо.

Если $2^\kappa=\kappa^+$, X и Y — изодинные пространства, $\{|X|,\operatorname{cf}|X|\}\cap \{\kappa,\kappa^+\} \neq \emptyset$ и $\operatorname{cf}|Y|=\kappa^+$, то пространство $X\times Y$ κ^+ -разложимо.

Следствия (GCH)

Пусть X и Y — изодинные пространства.

Если $2^\kappa=\kappa^+$, X и Y — изодинные пространства, $\{|X|,\operatorname{cf}|X|\}\cap \{\kappa,\kappa^+\} \neq \emptyset$ и $\operatorname{cf}|Y|=\kappa^+$, то пространство $X\times Y$ κ^+ -разложимо.

Следствия (GCH)

Пусть X и Y — изодинные пространства.

(1) Если |X| = |Y| — изолированный кардинал, то $X \times Y$ максимально разложимо.

Если $2^\kappa=\kappa^+$, X и Y — изодинные пространства, $\{|X|,\operatorname{cf}|X|\}\cap \{\kappa,\kappa^+\} \neq \emptyset$ и $\operatorname{cf}|Y|=\kappa^+$, то пространство $X\times Y$ κ^+ -разложимо.

Следствия (GCH)

Пусть X и Y — изодинные пространства.

- (1) Если |X| = |Y| изолированный кардинал, то $X \times Y$ максимально разложимо.
- (2) Если $\mathrm{cf}|X|=\mathrm{cf}|Y|$ изолированный кардинал, то $X\times Y$ $\mathrm{cf}|X|$ -разложимо.

Если $2^\kappa=\kappa^+$, X и Y — изодинные пространства, $\{|X|,\operatorname{cf}|X|\}\cap \{\kappa,\kappa^+\} \neq \emptyset$ и $\operatorname{cf}|Y|=\kappa^+$, то пространство $X\times Y$ κ^+ -разложимо.

Следствия (GCH)

Пусть X и Y — изодинные пространства.

- (1) Если |X| = |Y| изолированный кардинал, то $X \times Y$ максимально разложимо.
- (2) Если $\mathrm{cf}|X|=\mathrm{cf}|Y|$ изолированный кардинал, то $X\times Y$ $\mathrm{cf}|X|$ -разложимо.
- (3) Если X хаусдорфово и $X \times X$ не ω -разложимо, то $|X| \geq \aleph_{\omega}$.

(4) Если $|Y| = |X|^+$, то $X \times Y$ максимально разложимо (Малыхин, 1973).

- (4) Если $|Y| = |X|^+$, то $X \times Y$ максимально разложимо (Малыхин, 1973).
- (5) Если $|X|=\omega_1$ и $|Y|=\aleph_\omega$, то $X\times Y$ ω_1 -разложимо.

- (4) Если $|Y| = |X|^+$, то $X \times Y$ максимально разложимо (Малыхин, 1973).
- (5) Если $|X|=\omega_1$ и $|Y|=\aleph_\omega$, то $X\times Y$ ω_1 -разложимо.

Juhász, Soukup, Szentmiklóssy, 2023

Если совместно существование измеримого кардинала, то совместно существование монотонно нормального изодинного пространства мощности \aleph_{ω} , произведение которого с любым счетным пространством не ω_1 -разложимо.

Теорема 3 (MA или $\mathfrak{r}=\mathfrak{c}$)

Если X и Y — изодинные пространства, $\operatorname{cf}|X| = \omega$ и $\operatorname{cf}|Y| = \operatorname{cf}(\mathfrak{c})$, то пространство $X \times Y$ ω -разложимо.

Теорема 3 (MA или $\mathfrak{r}=\mathfrak{c}$)

Если X и Y — изодинные пространства, $\operatorname{cf}|X| = \omega$ и $\operatorname{cf}|Y| = \operatorname{cf}(\mathfrak{c})$, то пространство $X \times Y$ ω -разложимо. Если к тому же $\operatorname{cf}(\mathfrak{c}) = \omega_1$, то пространство $X \times Y$ ω_1 -разложимо.

Верно ли, что квадрат (хаусдорфова, регулярного,...) изодинного пространства мощности \aleph_{ω} 3-разложим? Максимально разложим?