THE DRESSING CHAIN AND ONE-POINT COMMUTING DIFFERENCE OPERATORS OF RANK 1.

Gulnara S. Mauleshova

Sobolev Institute of Mathematics, Novosibirsk, Russia
December 15, 2018

We denote by $\tilde{L}_{k}, \tilde{L}_{s}$ the operators of orders $k=N_{-}+N_{+}$and $s=M_{-}+M_{+}$

$$
\tilde{L}_{k}=\sum_{j=-N_{-}}^{N_{+}} u_{j}(n) T^{j}, \quad \tilde{L}_{s}=\sum_{j=-M_{-}}^{M_{+}} v_{j}(n) T^{j},
$$

where $n \in \mathbb{Z}, N_{ \pm}, M_{ \pm} \geq 0, T$ is the shift operator

$$
T f(n)=f(n+1), \quad f: \mathbb{Z} \rightarrow \mathbb{C} .
$$

If two difference operators \tilde{L}_{k} and \tilde{L}_{s} commute, then there is a nonzero polynomial $F(z, w)$ such that $F\left(\tilde{L}_{k}, \tilde{L}_{s}\right)=0$. The polynomial F defines the spectral curve of the pair $\tilde{L}_{k}, \tilde{L}_{s}$

$$
\Gamma=\left\{(z, w) \in \mathbb{C}^{2} \mid F(z, w)=0\right\}
$$

The common eigenvalues are parametrized by the spectral curve

$$
\tilde{L}_{k} \psi=z \psi, \quad \tilde{L}_{s} \psi=w \psi, \quad(z, w) \in \Gamma .
$$

The dimension of the space of common eigenfunctions of the pair $\tilde{L}_{k}, \tilde{L}_{s}$ for fixed eigenvalues is called the rank of $\tilde{L}_{k}, \tilde{L}_{s}$

$$
l=\operatorname{dim}\left\{\psi: \tilde{L}_{k} \psi=z \psi, \quad \tilde{L}_{s} \psi=w \psi, \quad(z, w) \in \Gamma .\right\}
$$

Any commutative ring of difference operators in one discrete variable is isomorphic to the ring of meromorphic functions on a spectral curve with s fixed poles (I. M. Krichever, S. P. Novikov). Such operators are said to be s-point.

Spectral data for two-point operators of rank 1 were found by I. M. Krichever and examples of such operators also were found by D. Mumford. Eigenfunctions for two-point operators of rank 1 (Baker-Akhiezer functions) can be found explicitly in terms of theta function of the spectral curves. Spectral data for one-point operators of rank $l>1$ were obtained by I. M. Krichever and S. P Novikov. These operators play an important role in constructing algebro-geometric solutions of $1 D$ and $2 D$ Toda chains. One-point Krichever-Novikov operators of rank 2 were studied by G. S. Mauleshova and A. E. Mironov; in particular, examples of such operators for hyperelliptic spectral curves of any genus were constructed.

Consider the hyperelliptic spectral curve Γ defined by the equation

$$
w^{2}=F_{g}(z)=z^{2 g+1}+c_{2 g} z^{2 g}+\ldots+c_{0}
$$

for the base point we take $q=\infty$. Let $\psi(n, P)$ be the corresponding to the Baker-Akhiezer function. Then there exist commuting operators $\tilde{L}_{2}, \tilde{L}_{2 g+1}$ such that

$$
\tilde{L}_{2} \psi=\left(\left(T+U_{n}\right)^{2}+W_{n}\right) \psi=z \psi, \quad \tilde{L}_{2 g+1} \psi=w \psi
$$

Example 1

The operator

$$
L_{2}^{\sharp}=\left(T+r_{1} \cos (n)\right)^{2}+\frac{r_{1}^{2} \sin (g) \sin (g+1)}{2 \cos ^{2}\left(g+\frac{1}{2}\right)} \cos (2 n),
$$

$r_{1} \neq 0$ commutes with a operator $L_{2 g+1}^{\sharp}$.

Example 2

The operator

$$
L_{2}^{\curlyvee}=\left(T+\alpha_{2} n^{2}+\alpha_{0}\right)^{2}-g(g+1) \alpha_{2}^{2} n^{2}, \quad \alpha_{2} \neq 0
$$

commutes with a operator $L_{2 g+1}^{\curlyvee}$.

We consider one-point ε-difference operators of rank 1 having the form

$$
L_{k}=\frac{T_{\varepsilon}^{k}}{\varepsilon^{k}}+u_{k-1}(x, \varepsilon) \frac{T_{\varepsilon}^{k-1}}{\varepsilon^{k-1}}+\ldots+u_{0}(x, \varepsilon)
$$

where T_{ε} is the operator of shift by ε, i.e., $T_{\varepsilon} f(x)=f(x+\varepsilon)$, $f: \mathbb{C} \rightarrow \mathbb{C}$. Let Γ be the hyperelliptic spectral curve determined by the equation

$$
w^{2}=F_{g}(z)=z^{2 g+1}+c_{2 g} z^{2 g}+\ldots+c_{0}
$$

and let $q=\infty$. Suppose that the operator

$$
L_{2}=\frac{T_{\varepsilon}^{2}}{\varepsilon^{2}}+A(x, \varepsilon) \frac{T_{\varepsilon}}{\varepsilon}+B(x, \varepsilon)
$$

commutes with $L_{2 g+1}$.

Consider the function $A_{g}(x, \varepsilon)$ defined as follows. We put

$$
A_{1}=-2 \zeta(\varepsilon)-\zeta(x-\varepsilon)+\zeta(x+\varepsilon)
$$

and

$$
A_{2}=-\frac{3}{2}(\zeta(\varepsilon)+\zeta(3 \varepsilon)+\zeta(x-2 \varepsilon)-\zeta(x+2 \varepsilon))
$$

where $\zeta(x)$ is the Weierstrass function. Next, for odd $g=2 g_{1}+1$, we put

$$
A_{g}=A_{1} \prod_{k=1}^{g_{1}}\left(1+\frac{\zeta(x-(2 k+1) \varepsilon)-\zeta(x+(2 k+1) \varepsilon)}{\zeta(\varepsilon)+\zeta((4 k+1) \varepsilon)}\right)
$$

and for even $g=2 g_{1}$, we put

$$
A_{g}=A_{2} \prod_{k=2}^{g_{1}}\left(1+\frac{\zeta(x-2 k \varepsilon)-\zeta(x+2 k \varepsilon)}{\zeta(\varepsilon)+\zeta((4 k-1) \varepsilon)}\right) .
$$

Example 3

The operator

$$
L_{2}=\frac{T_{\varepsilon}^{2}}{\varepsilon^{2}}+A_{g}(x, \varepsilon) \frac{T_{\varepsilon}}{\varepsilon}+\wp(\varepsilon)
$$

commutes with $L_{2 g+1}$. Moreover,

$$
L_{2}=\partial_{x}^{2}-g(g+1) \wp(x)+O(\varepsilon)
$$

Let

$$
\hat{L}_{2}=\frac{T_{\varepsilon}^{2}}{\varepsilon^{2}}+(u(x, t, \varepsilon)+u(x+\varepsilon, t, \varepsilon)) \frac{T_{\varepsilon}}{\varepsilon}-v(x, \varepsilon)
$$

We consider the one-point algebraic-geometric solution of rank one

$$
\begin{gather*}
\partial_{t} u(x, t, \varepsilon)+\partial_{t} u(x+\varepsilon, t, \varepsilon)= \tag{1}\\
u^{2}(x, t, \varepsilon)-u^{2}(x+\varepsilon, t, \varepsilon)+v(x, \varepsilon)-v(x+\varepsilon, \varepsilon)
\end{gather*}
$$

Equation (3) is equivalent to the commutativity condition

$$
\left[\hat{L}_{2}, \partial_{t}-\left(\frac{T_{\varepsilon}}{\varepsilon}+u(x, t, \varepsilon)\right)\right]=0
$$

Theorem 1

For $g=1$, the one-point algebraic-geometric solution of rank one of equation (1) has the form

$$
\begin{gathered}
v(x, \varepsilon)=\gamma(x, \varepsilon)+\gamma(x+\varepsilon, \varepsilon)-\left(\frac{\sqrt{F_{1}(\gamma(x, \varepsilon))}+\sqrt{F_{1}(\gamma(x+\varepsilon, \varepsilon))}}{\gamma(x, \varepsilon)-\gamma(x+\varepsilon, \varepsilon)}\right)^{2}, \\
u(x, t, \varepsilon)=-\frac{\sqrt{F_{1}(\gamma(x, \varepsilon))}+\sqrt{F_{1}(\gamma(x+\varepsilon, \varepsilon))}}{\gamma(x, \varepsilon)-\gamma(x+\varepsilon, \varepsilon)}- \\
\frac{\sqrt{F_{1}(\wp(t))}+\sqrt{F_{1}(\gamma(x, \varepsilon))}}{\wp(t)-\gamma(x, \varepsilon)}+\frac{\sqrt{F_{1}(\wp(t))}+\sqrt{F_{1}(\gamma(x+\varepsilon, \varepsilon))}}{\wp(t)-\gamma(x+\varepsilon, \varepsilon)},
\end{gathered}
$$

where $F_{1}(z)=z^{3}+c_{1} z+c_{0}, \gamma(x, \varepsilon)$ is any function parameter, $\wp(t)$ is the Weierstrass elliptic function satisfying the equation

$$
\begin{equation*}
\left(\wp^{\prime}(t)\right)^{2}=4 F_{1}(\wp(t)) . \tag{*}
\end{equation*}
$$

The operators \hat{L}_{2}, \hat{L}_{3} satisfy the equation $\hat{L}_{3}^{2}=F_{1}\left(\hat{L}_{2}\right)$.

If

$$
\gamma(x, \varepsilon)=\wp(x-\varepsilon),
$$

then

$$
\begin{gathered}
\hat{L}_{2}=\frac{T_{\varepsilon}^{2}}{\varepsilon^{2}}-(2 \zeta(\varepsilon)+\zeta(x-\varepsilon+t)-\zeta(x+\varepsilon+t)) \frac{T_{\varepsilon}}{\varepsilon}+\wp(\varepsilon), \\
\hat{L}_{3}=\frac{T_{\varepsilon}^{3}}{\varepsilon^{3}}-(3 \zeta(\varepsilon)+\zeta(x-\varepsilon+t)-\zeta(x+2 \varepsilon+t)) \frac{T_{\varepsilon}^{2}}{\varepsilon^{2}}+ \\
((\zeta(\varepsilon)+\zeta(x-\varepsilon+t)-\zeta(x+t))(\zeta(\varepsilon)+\zeta(x+t)-\zeta(x+\varepsilon+t))+ \\
2 \wp(\varepsilon)+\wp(x+t)) \frac{T_{\varepsilon}}{\varepsilon}+\frac{1}{2} \wp^{\prime}(\varepsilon), \\
\partial_{t}-\left(\frac{T_{\varepsilon}}{\varepsilon}+u(x, t, \varepsilon)\right)=\partial_{t}-\left(\frac{T_{\varepsilon}}{\varepsilon}-\zeta(\varepsilon)-\zeta(x-\varepsilon+t)+\zeta(x+t)\right),
\end{gathered}
$$

where $\zeta(z)$ is the Weierstrass elliptic function.

Moreover,

$$
\begin{gathered}
\hat{L}_{2}=\left(\partial_{x}^{2}-2 \wp(x+t)\right)+O(\varepsilon) \\
\hat{L}_{3}=\left(\partial_{x}^{3}-3 \wp(x+t) \partial_{x}-\frac{3}{2} \wp^{\prime}(x+t)\right)+O(\varepsilon) \\
\partial_{t}-\left(\frac{T_{\varepsilon}}{\varepsilon}-\zeta(\varepsilon)-\zeta(x-\varepsilon+t)+\zeta(x+t)\right)=\left(\partial_{t}-\partial_{x}\right)+O(\varepsilon)
\end{gathered}
$$

Herewith, the spectral curve of the pair of commuting differential operators

$$
\partial_{x}^{2}-2 \wp(x+t), \quad \partial_{x}^{3}-3 \wp(x+t) \partial_{x}-\frac{3}{2} \wp^{\prime}(x+t)
$$

is the same as for ε-difference operators \hat{L}_{2}, \hat{L}_{3}.

