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We denote by L̃k, L̃s the operators of orders k = N− +N+ and
s = M− +M+

L̃k =

N+∑
j=−N−

uj(n)T j, L̃s =

M+∑
j=−M−

vj(n)T j,

where n ∈ Z, N±,M± ≥ 0, T is the shift operator

Tf(n) = f(n+ 1), f : Z→ C.



If two difference operators L̃k and L̃s commute, then there is a
nonzero polynomial F (z, w) such that F (L̃k, L̃s) = 0. The
polynomial F defines the spectral curve of the pair L̃k, L̃s

Γ = {(z, w) ∈ C2|F (z, w) = 0}.



The common eigenvalues are parametrized by the spectral curve

L̃kψ = zψ, L̃sψ = wψ, (z, w) ∈ Γ.

The dimension of the space of common eigenfunctions of the pair
L̃k, L̃s for fixed eigenvalues is called the rank of L̃k, L̃s

l = dim{ψ : L̃kψ = zψ, L̃sψ = wψ, (z, w) ∈ Γ.}

Any commutative ring of difference operators in one discrete variable
is isomorphic to the ring of meromorphic functions on a spectral
curve with s fixed poles (I. M. Krichever, S. P. Novikov). Such
operators are said to be s–point.



Spectral data for two–point operators of rank 1 were found by
I. M. Krichever and examples of such operators also were found by
D. Mumford. Eigenfunctions for two–point operators of rank 1
(Baker–Akhiezer functions) can be found explicitly in terms of theta
function of the spectral curves. Spectral data for one–point
operators of rank l > 1 were obtained by I. M. Krichever and
S. P Novikov. These operators play an important role in
constructing algebro–geometric solutions of 1D and 2D Toda
chains. One–point Krichever–Novikov operators of rank 2 were
studied by G. S. Mauleshova and A. E. Mironov; in particular,
examples of such operators for hyperelliptic spectral curves of any
genus were constructed.



Consider the hyperelliptic spectral curve Γ defined by the equation

w2 = Fg(z) = z2g+1 + c2gz
2g + . . .+ c0,

for the base point we take q =∞. Let ψ(n, P ) be the corresponding
to the Baker–Akhiezer function. Then there exist commuting
operators L̃2, L̃2g+1 such that

L̃2ψ =
(
(T + Un)2 +Wn

)
ψ = zψ, L̃2g+1ψ = wψ.



Example 1
The operator

L
]

2 = (T + r1 cos(n))2 +
r21 sin(g) sin(g + 1)

2 cos2(g + 1
2
)

cos(2n),

r1 6= 0 commutes with a operator L]

2g+1.

Example 2
The operator

L
X

2 = (T + α2n
2 + α0)

2 − g(g + 1)α2
2n

2, α2 6= 0

commutes with a operator LX

2g+1.



We consider one–point ε–difference operators of rank 1 having the
form

Lk =
T k
ε

εk
+ uk−1(x, ε)

T k−1
ε

εk−1
+ . . .+ u0(x, ε),

where Tε is the operator of shift by ε, i.e., Tεf(x) = f(x+ ε),
f : C→ C. Let Γ be the hyperelliptic spectral curve determined by
the equation

w2 = Fg(z) = z2g+1 + c2gz
2g + . . .+ c0,

and let q =∞. Suppose that the operator

L2 =
T 2
ε

ε2
+ A(x, ε)

Tε
ε

+B(x, ε)

commutes with L2g+1.



Consider the function Ag(x, ε) defined as follows. We put

A1 = −2ζ(ε)− ζ(x− ε) + ζ(x+ ε)

and
A2 = −3

2

(
ζ(ε) + ζ(3ε) + ζ(x− 2ε)− ζ(x+ 2ε)

)
,

where ζ(x) is the Weierstrass function. Next, for odd g = 2g1 + 1,
we put

Ag = A1

g1∏
k=1

(
1 +

ζ(x− (2k + 1)ε)− ζ(x+ (2k + 1)ε)

ζ(ε) + ζ((4k + 1)ε)

)
,

and for even g = 2g1, we put

Ag = A2

g1∏
k=2

(
1 +

ζ(x− 2kε)− ζ(x+ 2kε)

ζ(ε) + ζ((4k − 1)ε)

)
.



Example 3
The operator

L2 =
T 2
ε

ε2
+ Ag(x, ε)

Tε
ε

+ ℘(ε)

commutes with L2g+1. Moreover,

L2 = ∂2x − g(g + 1)℘(x) +O(ε).



Let

L̂2 =
T 2
ε

ε2
+ (u(x, t, ε) + u(x+ ε, t, ε))

Tε
ε
− v(x, ε).

We consider the one–point algebraic–geometric solution of rank one

∂tu(x, t, ε) + ∂tu(x+ ε, t, ε) = (1)

u2(x, t, ε)− u2(x+ ε, t, ε) + v(x, ε)− v(x+ ε, ε).

Equation (3) is equivalent to the commutativity condition

[L̂2, ∂t − (
Tε
ε

+ u(x, t, ε))] = 0.



Theorem 1
For g = 1, the one–point algebraic-geometric solution of rank one of
equation (1) has the form

v(x, ε) = γ(x, ε)+γ(x+ε, ε)−
(√

F1(γ(x, ε)) +
√
F1(γ(x+ ε, ε))

γ(x, ε)− γ(x+ ε, ε)

)2

,

u(x, t, ε) = −
√
F1(γ(x, ε)) +

√
F1(γ(x+ ε, ε))

γ(x, ε)− γ(x+ ε, ε)
−√

F1(℘(t)) +
√
F1(γ(x, ε))

℘(t)− γ(x, ε)
+

√
F1(℘(t)) +

√
F1(γ(x+ ε, ε))

℘(t)− γ(x+ ε, ε)
,

where F1(z) = z3 + c1z + c0, γ(x, ε) is any function parameter, ℘(t)
is the Weierstrass elliptic function satisfying the equation

(℘′(t))2 = 4F1(℘(t)). (∗)

The operators L̂2, L̂3 satisfy the equation L̂2
3 = F1(L̂2).



If
γ(x, ε) = ℘(x− ε),

then

L̂2 =
T 2
ε

ε2
−
(
2ζ(ε) + ζ(x− ε+ t)− ζ(x+ ε+ t)

)Tε
ε

+ ℘(ε),

L̂3 =
T 3
ε

ε3
−
(
3ζ(ε) + ζ(x− ε+ t)− ζ(x+ 2ε+ t)

)T 2
ε

ε2
+(

(ζ(ε) + ζ(x− ε+ t)− ζ(x+ t))(ζ(ε) + ζ(x+ t)− ζ(x+ ε+ t))+

2℘(ε) + ℘(x+ t)
)Tε
ε

+
1

2
℘′(ε),

∂t −
(Tε
ε

+ u(x, t, ε)
)

= ∂t −
(Tε
ε
− ζ(ε)− ζ(x− ε+ t) + ζ(x+ t)

)
,

where ζ(z) is the Weierstrass elliptic function.



Moreover,
L̂2 =

(
∂2x − 2℘(x+ t)

)
+O(ε),

L̂3 =
(
∂3x − 3℘(x+ t)∂x −

3

2
℘′(x+ t)

)
+O(ε),

∂t −
(Tε
ε
− ζ(ε)− ζ(x− ε+ t) + ζ(x+ t)

)
= (∂t − ∂x) +O(ε).

Herewith, the spectral curve of the pair of commuting differential
operators

∂2x − 2℘(x+ t), ∂3x − 3℘(x+ t)∂x −
3

2
℘′(x+ t)

is the same as for ε–difference operators L̂2, L̂3.


