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Quasi�linear PDEs

Quasi-linear systems of the form

A(U)Ux +B(U)Uy = 0,

Ut = A(U)Ux, U = (u1, . . . , un)T

appears in such areas like

gas-dynamics

non-linear elasticity

integrable geodesic �ows on 2-torus

and many others.



Hopf equation

Consider the following equation ut + uux = 0. The solution of the Cauchy
problem u|t=0 = g(x) is given by the implicit formula

u(x, t) = g(x− ut).
The solution becomes many valued.
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Integrable geodesic �ow on the 2�torus

Let
ds2 = gij(x)dxidxj , i, j = 1, 2

be a Riemannian metric on T2. The geodesic �ow is called integrable if the
Hamiltonian system

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
, H =

1

2
gijpipj

possesses an additional �rst integral F : T ∗T2 → R such that

Ḟ = {F,H} =

2∑
j=1

(
∂F

∂xj
∂H

∂pj
− ∂F

∂pj

∂H

∂xj

)
= 0

and F is functionally independent with H almost everywhere.



Integrable geodesic �ow on the 2�torus

Theorem (Bialy, M.)
If the Hamiltonian system has an integral F which is a homogeneous polynomial
of degree n, then on the covering plane R2 there exist the global semi�geodesic
coordinates (t, x) such that

ds2 = g2(t, x)dt2 + dx2, H =
1

2
(
p2

1

g2
+ p2

2)

and F can be written in the form:

Fn =

n∑
k=0

ak(t, x)

gn−k
pn−k1 pk2 .

Here the last two coe�cients can be normalized by the following way:

an−1 = g, an = 1.



Integrable geodesic �ow on the 2�torus

The condition {F,H} = 0 is equivalent to the quasi�linear PDEs

Ut +A(U)Ux = 0, (1)

where UT = (a0, . . . , an−1), an−1 = g,

A =


0 0 . . . 0 0 a1

an−1 0 . . . 0 0 2a2 − na0

0 an−1 . . . 0 0 3a3 − (n− 1)a1

. . . . . . . . . . . . . . . . . .
0 0 . . . an−1 0 (n− 1)an−1 − 3an−3

0 0 . . . 0 an−1 nan − 2an−2

 .



Semi-Hamiltonian systems

Theorem (Bialy, M.)
(1) is semi-Hamiltonian system. Namely, there is a regular change of variables

U 7→ (G1(U), . . . , Gn(U))

such that for some F1(U), . . . , Fn(U) the following conservation laws hold:

(Gi(U))x + (Fi(U))y = 0, i = 1, . . . , n.

Moreover, in the hyperbolic domain, where eigenvalues λ1, . . . , λn of A(U) are
real and pairwise distinct, there exists a change of variables

U 7→ (r1(U), . . . , rn(U))

such that the system can be written in Riemannian invariants:

(ri)x + λi(r)(ri)y = 0, i = 1, . . . , n.



Systems of hydrodynamical tape

∂rk

(
∂riλj
λi − λj

)
= ∂ri

(
∂rkλj
λk − λj

)
,

Γiij = ∂rj log
√
gii =

(
∂rjλi

λj − λi

)
,

ds2 = g11(r)(dr1)2 + · · ·+ gnn(drn)2.

Generalized hodograph method

∂rjwi

wi − wj
=

∂rjλi

λj − λi
,

wi = λit+ x, i = 1, . . . , n.



Geodesic �ow on the 2-torus in elliptic region

Theorem (Bialy, M.)
Let n = 4, then in the elliptic regions the following alternative holds:
either metric is �at or F4 is reducible, that is it can be expressed as:

F4 = k1F
2
2 + 2k2HF2 + 4k3H

2

where F2 is a polynomial of degree 2 which is an integral of the geodesic �ow in
the elliptic region and ki are constants.



Geodesic �ow on the 2-torus in elliptic region

The following theorem is crucial in proof of the previous one.

Theorem (Bialy, M.)
Assume that Ωe = T2 and assume that for all (t, x) the polynomial G4 has 4
distinct roots, 2 � complex conjugate s1,2 = α± iβ and 2 real s3,4. Assume also
that the imaginary part of Riemann invariants r1,2 does not vanish. Then the
real eigenvalues λ3,4 = gs3,4 are necessarily genuinely non-linear and therefore
the corresponding Riemann invariants are constants. In particular all ai must be
constant, and so the metric is �at.



Model of non-linear elasticity

Consider the following equation:

utt + (σ(u))xx = 0, u(t, x+ 1) = u(t, x). (1)

It can be viewed as a compatibility condition of the quasi-linear system of the
form:

ut = −vx,

vt = (σ(u))x. (2)



Model of non-linear elasticity

Theorem (Bialy, M.)
If the function σ(u) is either of quadratic-like or cubic-like type, then any
C2-solution (u(t, x), v(t, x)) of the system (2) de�ned on the half-cylinder
[t0,+∞)× S1 so that

u(t, x+ 1) = u(t, x), v(t, x+ 1) = v(t, x), t ≥ t0,

which has initial values in the Hyperbolic region Uh = {u < α} ∪ {u > β} must
be constant.
Theorem (Bialy, M.)
If the function σ(u) is either of quadratic-like or cubic-like type, then any
C2-solution (u(t, x), v(t, x)) of the system (2) de�ned on the whole cylinder
R× S1 so that

u(t, x+ 1) = u(t, x), v(t, x+ 1) = v(t, x)

must be constant.



Model of non-linear elasticity

These theorems follow from the following facts. The system (2) can be written
in the form: (

u
v

)
t

+A(u, v)

(
u
v

)
x

= 0, A =

(
0 1

−σ′
(u) 0

)
.

In the hyperbolic region Uh the matrix A has two real distinct eigenvalues:

λ1 =
√
−σ′(u), λ2 = −

√
−σ′(u).

Riemannian invariants have the form:

r1 = v −
∫ α

u

√
−σ′(u)du, r2 = v +

∫ α

u

√
−σ′(u)du,

(ri)t + λi(ri)x = 0, i = 1, 2.



Model of non-linear elasticity

The crucial fact here is that both eigenvalues are genuinely non-linear in Uh by
the formulas:

(λ1)r1 = (λ2)r2 =
σ

′′
(u)

4σ′(u)
6= 0.

Along characteristics we get the following Riccati equations:

Lv1(z1) + kz2
1 = 0, Lv2(z2) + kz2

2 = 0,

where

z1 = (r1)x(−σ
′
(u))

1
4 , z2 = (r2)x(−σ

′
(u))

1
4 , k = − σ

′′

4(−σ′(u))
5
4

and
Lv1 = ∂t + λ1∂x, Lv2 = ∂t + λ2∂x

in what follows non-existence of periodic non-constant solutions.



Magnetic geodesic �ow

Consider Hamiltonian system

ẋj = {xj , H}mg, ṗj = {pj , H}mg, j = 1, 2

on a 2-torus in magnetic �eld with H = 1
2g
ijpipj and the Poisson bracket:

{F,H}mg =

2∑
i=1

(
∂F

∂xi
∂H

∂pi
− ∂F

∂pi

∂H

∂xi

)
+ Ω(x1, x2)

(
∂F

∂p1

∂H

∂p2
− ∂F

∂p2

∂H

∂p1

)
.

(6)

Example

Let ds2 = Λ(y)(dx2 + dy2) and the magnetic form ω = −u′(y)dx ∧ dy. Then
the magnetic geodesic �ow is integrable and the �rst integral is linear in
momenta:

F1 = p1 + u(y).



Main result

Theorem

There exist real analytic Riemannian metrics on the 2-torus which are arbitrary
close to the Liouville metrics (and di�erent from them) and a non-zero analytic
magnetic �elds such that magnetic geodesic �ows on the energy level {H = 1

2}
have polynomial in momenta �rst integral of degree two.



Magnetic geodesic �ow

Choose the conformal coordinates (x, y), such that ds2 = Λ(x, y)(dx2 + dy2),

H =
p21+p22

2Λ . On the �xed energy level H = 1
2 one can parameterize momenta by

the following way:

p1 =
√

Λ cosϕ, p2 =
√

Λ sinϕ.

Hamiltonian equations take the form

ẋ =
cosϕ√

Λ
, ẏ =

sinϕ√
Λ
, ϕ̇ =

Λy

2Λ
√

Λ
cosϕ− Λx

2Λ
√

Λ
sinϕ− Ω

Λ
.

We shall search F in the form

F (x, y, ϕ) =

k=N∑
k=−N

ak(x, y)eikϕ. (7)

Here ak = uk + ivk, a−k = āk. Condition Ḟ = {F,H}mg = 0 is equivalent to
the following equation

Fx cosϕ+ Fy sinϕ+ Fϕ

(
Λy
2Λ

cosϕ− Λx
2Λ

sinϕ− Ω√
Λ

)
= 0. (8)



Magnetic geodesic �ow

Substituted (7) to (8), all the coe�cients of eikϕ must be equal to zero. One
obtains

Λy
2Λ

i(k − 1)ak−1 + i(k + 1)ak+1

2
− Λx

2Λ

i(k − 1)ak−1 − i(k + 1)ak+1

2i
+

+
(ak−1)x + (ak+1)x

2
+

(ak−1)y − (ak+1)y
2i

− ikΩak√
Λ

= 0, (9)

where k = 0, . . . , N + 1, ak = 0 while k > N.

One can eliminate Ω from this system thus obtaining the quasilinear PDEs on
aj and Λ of a kind

A(U)Ux +B(U)Uy = 0, (10)

where U = (Λ, u0, u1, . . . , uN−1, v1, . . . , vN−1)T .



Semi-Hamiltonian system

Let N = 2. Then (10) takes the form

A(U)Ux +B(U)Uy = 0,

where

A =


0 0 1 0
f 0 Λ 0
2 1 0 g

2

0 0 0 − f2

 , B =


0 0 1 0
−g 0 0 −Λ
0 0 − g2 0

2 −1 f
2 0

 , (11)

U = (Λ, u0, f, g)T , f = u1√
Λ
, g = v1√

Λ
.

Magnetic �eld takes the form: Ω = 1
4 (gx − fy).



Crucial construction

One can check that

U0(x, y) =


Λ1(x) + Λ2(y)

2Λ2(y)− 2Λ1(x)
0
0

 (12)

is the solution of the system (11), where Λ1(x) and Λ2(y) are periodic positive
functions: Λ1(x+ 1) = Λ1(x), Λ2(y + 1) = Λ2(y). This solution corresponds to
the case of geodesic �ow of the Liouville metric with zero magnetic �eld having
the �rst integral of the second degree of the form

F2 =
Λ2(y)p2

1 − Λ1(x)p2
2

Λ1(x) + Λ2(y)
.

Λ1 and Λ2 are assumed to be real analytic functions.



Introduce the following evolution equations:

Ut = A1(U)Ux +B1(U)Uy, (13)

where

A1 =


g 0 0 Λ
−2g g 0 −2Λ

0 0 0 0
0 −2 0 0

 , B1 =


f 0 Λ 0
2f f 2Λ 0
0 2 0 0
0 0 0 0

 .

This system de�nes the symmetry of the system (11) so that the �ow of (13)
transforms solutions to solutions as we shall prove below.
Next we apply the following consequence of Cauchy�Kowalevskaya theorem:

Lemma

The Cauchy problem for the system (13) with the initial data

U(x, y, t) |t=0= U0(x, y) (14)

has a unique analytic periodic (U(x+ 1, y, t) = U(x, y + 1, t) = U(x, y, t))
solution for t small enough.



Let us prove that U(x, y, t) constructed in Lemma 1 is a solution of our system
(9) for all small t. We denote by Ṽ (x, y, t) the following real analytic vector
function

Ṽ = A(U)Ux +B(U)Uy.

By our construction Ṽ (x, y, 0) = 0. We have to prove that Ṽ ≡ 0. Denote

Ṽ =


V1

V2

V3

V4

 , V =

V2

V3

V4

 .

By direct calculations using (13) one can check that Ṽ satis�es the following
system of equations:

V1

V2

V3

V4


t

= A2


V1

V2

V3

V4


x

+B2


V1

V2

V3

V4


y

+ C2


V1

V2

V3

V4

+D2


V 2

1

V1V2

V1V3

V2V3

 . (15)



Here

A2 =


0 0 0 0
−gΛ g 0 −2Λ

0 0 0 0
2Λ −2 f g

 , B2 =


0 0 0 0
fΛ f 2Λ 0
2Λ 2 f g
0 0 0 0

 ,

C2 =


0 0 0 0
c1 c2 c3 −2Λx
c4 0 fy −fx
c5 0 −gy gx

 , D2 =


0 0 0 0

− fΛ
g − fg − 4Λ

g − 4
g

0 0 0 0
0 0 0 0

 ,

where

c1 =
2Λfxf + (f2 − g2 + 4Λ)Λx + 2Λu0x

g
, c2 =

2(ggx + 2Λx + u0x
)

g
,

c3 =
4Λfx + 2fΛx

g
, c4 = 4Λy +

1

2
f(fy − gx), c5 = 4Λx −

1

2
g(fy − gx).
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