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Quasi-linear PDEs

Quasi-linear systems of the form
AU, + BU)U, =0,

U, = A(U)U,, U= (ug,...,un)7"
appears in such areas like

m gas-dynamics

m non-linear elasticity

m integrable geodesic flows on 2-torus

and many others.



Hopf equation

Consider the following equation wu; + uu, = 0. The solution of the Cauchy
problem w|;—g = g(x) is given by the implicit formula

u(z,t) = gz — ut).

The solution becomes many valued.




Contents

m Integrable geodesic flows

m Non-existence of non-trivial global solutions (smooth periodic) of
quasi-linear systems: Hopf equations, model of non-linear elasticity,
geodesic flows on 2-torus in elliptic domains

m Existence of non-trivial global solutions (smooth periodic) of
quasi-linear systems: weakly non-linear systems, magnetic geodesic
flows on 2-torus on one energy level



Integrable geodesic flow on the 2—torus

Let o

ds* = g;j(z)dz'da?, i,j=1,2
be a Riemannian metric on T2. The geodesic flow is called integrable if the
Hamiltonian system

OH . OH 1

i 7 H==d"p:p;
€ 3]01" Di Oz’ 29 pipj

possesses an additional first integral F' : T*T? — R such that

2
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and Fis functionally independent with H almost everywhere.



Integrable geodesic flow on the 2—torus

Theorem (Bialy, M.)

If the Hamiltonian system has an integral F which is a homogeneous polynomial
of degree n, then on the covering plane R? there exist the global semi—geodesic
coordinates (t,x) such that

1 2
ds* = g*(t,x)dt* + da?, H= 5(% +p3)
and F can be written in the form:

ak(t’x) —k
= P5-

F, =
k=0

Here the last two coefficients can be normalized by the following way:

p-1 =9, an = 1.



Integrable geodesic flow on the 2—torus

The condition {F, H} = 0 is equivalent to the quasi—linear PDEs

U, + A(U)U, =0, (1)
where UT = (ag,...,an-1), Gn_1 =g,
0 0 0 0 aq
Ap—1 0 . 0 0 2&2 — nagp
A 0  ap-1 ... 0 0 3az — (n— 1)ay
0 0 cer Qp_1 0 (n—1)an—1 — 3an_3

0 0 - 0 Ap—1 Ny — 2059



Semi-Hamiltonian systems

Theorem (Bialy, M.)
(1) is semi-Hamiltonian system. Namely, there is a regular change of variables

U (G1(U),...,Gn(U))
such that for some Fy(U),..., F,(U) the following conservation laws hold:
(Gi(U))z + (F5(U))y = 0, i=1,...,n.

Moreover, in the hyperbolic domain, where eigenvalues A1, ..., \, of A(U) are
real and pairwise distinct, there exists a change of variables

U (r(0),...,mrn(U))
such that the system can be written in Riemannian invariants:

(ri)e + Xi(r)(ri)y =0, i=1,...,n.



Systems of hydrodynamical tape
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ds® = gi1(r)(dr)? + - + gnn(dr,)?.
Generalized hodograph method
O, w; B Or; Ai

W; — Wy )\j_/\i’

w; =Nt+x, 1=1,...,n.



Geodesic flow on the 2-torus in elliptic region

Theorem (Bialy, M.)
Let n = 4, then in the elliptic regions the following alternative holds:
either metric is flat or Fy is reducible, that is it can be expressed as:

Fy = k\F? + 2ky HF; + 4ks H>

where F5 is a polynomial of degree 2 which is an integral of the geodesic flow in
the elliptic region and k; are constants.



Geodesic flow on the 2-torus in elliptic region

The following theorem is crucial in proof of the previous one.

Theorem (Bialy, M.)

Assume that Q. = T? and assume that for all (t,x) the polynomial G, has 4
distinct roots, 2 — complex conjugate sy 2 = ax i3 and 2 real s3 4. Assume also
that the imaginary part of Riemann invariants 11 o does not vanish. Then the
real eigenvalues A3 4 = gss.a4 are necessarily genuinely non-linear and therefore
the corresponding Riemann invariants are constants. In particular all a; must be
constant, and so the metric is flat.



Model of non-linear elasticity

Consider the following equation:
g + (0(u))gz = 0, u(t,z + 1) = u(t, x). (1)

It can be viewed as a compatibility condition of the quasi-linear system of the
form:
Ut = — Vg,

v = (o(w)). 2)



Model of non-linear elasticity

Theorem (Bialy, M.)
If the function o(u) is either of quadratic-like or cubic-like type, then any
C?-solution (u(t,z),v(t,z)) of the system (2) defined on the half-cylinder
[to, +00) x S! so that

u(t,z + 1) = u(t,x), v(t,x + 1) =v(t, x), t>to,

which has initial values in the Hyperbolic region Uy, = {u < o} U {u > 8} must
be constant.

Theorem (Bialy, M.)

If the function o(u) is either of quadratic-like or cubic-like type, then any
C?-solution (u(t,x),v(t,x)) of the system (2) defined on the whole cylinder

R x St so that

u(t,x + 1) = u(t, x), v(t,x +1) =v(t,x)

must be constant.



Model of non-linear elasticity

These theorems follow from the following facts. The system (2) can be written

in the form:
09,70 a=( D)

In the hyperbolic region U}, the matrix A has two real distinct eigenvalues:

A =1/—0c'(u), Ao = —y/—0'(u).

Riemannian invariants have the form:

rL=v— / \/ =o' (u)du, e =v+ \/—0o' (u)du,

(ri)e + Xi(ri)z =0,  i=1,2.



Model of non-linear elasticity

The crucial fact here is that both eigenvalues are genuinely non-linear in Uj, by
the formulas:

"

o (u)
4o’ (u)

Along characteristics we get the following Riccati equations:

()‘1)T1 = (/\2)7"2 = 7é 0

Ly, (z1) + k‘zf =0, L, (z9) + kz% =0,

where

’

21 = (r)e(=0 (u))

’

y A2 = (TQ)CE(_J (u))%a k=—

ENG

and
Ly, =0+ M0z, Ly, =0+ A0,

in what follows non-existence of periodic non-constant solutions.



Magnetic geodesic flow

Consider Hamiltonian system
:tj:{xj?H}mgu pj:{pij}mg7 j:172

on a 2-torus in magnetic field with H = 1¢%p;p; and the Poisson bracket:

Op1 Opa Op2 Opy

2
& (OFOH OFoH ., (OF OH OF 0H
(Ftthog =32 (5553~ ) 205 )

=1

(6)

Let ds? = A(y)(dz? + dy?) and the magnetic form w = —u/(y)dz A dy. Then
the magnetic geodesic flow is integrable and the first integral is linear in
momenta:

Fi =p1 +u(y).



Main result

Theorem

There exist real analytic Riemannian metrics on the 2-torus which are arbitrary
close to the Liouville metrics (and different from them) and a non-zero analytic
magnetic fields such that magnetic geodesic flows on the energy level {H = 1}
have polynomial in momenta first integral of degree two.



Magnetic geodesic flow

Choose the conformal coordinates (x,v), such that ds? = A(x,y)(dx? + dy?),

2 2 . .
H= %. On the fixed energy level H = 1 one can parameterize momenta by
the following way:

p1=VAcosp,  p»=VAsing.
Hamiltonian equations take the form

cos ¢ . sine

. A Ay
_W’ y—ﬁ, @=2A\y/Kcosgo—2A\/Ksmg0—A.
We shall search F' in the form
k=N
F(mvya@) = Z ak(m,y)eikga. (7)

k=—N

Here aj, = uy, + ivy, a_j, = aj. Condition ' = {F,H}g = 0 is equivalent to
the following equation

Ay
Fycosp+ Fysing + F, <

A, Q
2AcosgoQAsmcp\/K)0. (8)



Magnetic geodesic flow

Substituted (7) to (8), all the coefficients of ¢?*¥ must be equal to zero. One
obtains

Ay ’L(k‘ - 1)@1971 + Z(k‘ + 1)ak+1 B A, Z(/{: — 1)ak,1 — Z(k‘ + 1)ak+1 n

2A 2 2A 2i

(ak-1)z + (@kt1)2 n (ak—1)y — (ar41)y  kQay
2 2i VA
where £ =0,..., N+ 1, ar = 0 while £ > N.

One can eliminate €2 from this system thus obtaining the quasilinear PDEs on
a; and A of a kind
AWU)U, + B(U)U, =0, (10)

T
where U = (A, uo,ul,...,uN_l,vl,...,vN_l) .



Semi-Hamiltonian system

Let N = 2. Then (10) takes the form

AU)U, + B(U)U, =0,

where
0 0 1 O 0 0 1 0
| f 0 A O |l—9 O 0 -—-A
A= 2 1 0 % ’ B= 0 0 ,% ' E (11)
000 -1 2 -1 £ o0
U:(A7u0,f,g)T, f:%7 g:%



Crucial construction

One can check that

Ay () + Az (y)

0

is the solution of the system (11), where A;(x) and Ay(y) are periodic positive

functions: Ay (z + 1) = Aq1(z), Aa(y+ 1) = As(y). This solution corresponds to
the case of geodesic flow of the Liouville metric with zero magnetic field having
the first integral of the second degree of the form

7, A2)p? — A (@)p3
P M)+ Aq(y)

A1 and A, are assumed to be real analytic functions.



Introduce the following evolution equations:

where
g 0 0 A f 0 A O
20 ¢ 0 —2A Cl2f o2 0
A = 0 0o 0 o0 |’ Bi=19 5% o o
0 -2 0 0 0 0 0 0

This system defines the symmetry of the system (11) so that the flow of (13)
transforms solutions to solutions as we shall prove below.
Next we apply the following consequence of Cauchy—Kowalevskaya theorem:

The Cauchy problem for the system (13) with the initial data

U(z,y,t) lt=0= Uo(x,y) (14)

has a unique analytic periodic (U(z + 1,y,t) = U(x,y + 1,t) = U(z,y,t))
solution for t small enough.



Let us prove that U(z,y,t) constructed in Lemma 1 is a solution of our system
(9) for all small t. We denote by V(z,y,t) the following real analytic vector
function

V = A(U)U, + B(U)U,.
By our construction V (z,%,0) = 0. We have to prove that V = 0. Denote

Vi Vi
T B ., v=1|wn
Vs v
Vi 4

By direct calculations using (13) one can check that V satisfies the following
system of equations:

Vi Vi " Vi %
nl o, (v v, v, A
vo | Tl TP TR v TP v (15)
Vi Vi Vi Vi VoV



Here

0 0 0 0
—gA 0 —2A
A2 = g g 0 0 B
2N =2 f g
0 0 0 0
Cc1 C2 C3 —QAQJ
= D =
Cs a0 f, —f | 2
cs 0 —Gy 9z
where
. 20fof 4+ (2 — g® + 4N A, + 2Aug,
1 g )
ANfy + 2f Ay 1
c3 = fif’ ca = 4hy + 5 f(fy = 92),

g

0 0 0 O
fA f 2A 0
2N 2 f g|’

0O 0 0 O

2(99@ + 2Az + uoz)
g )

1
s =140, = 59(fy — 92).
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