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Introduction

• A space is meager (or of the first Baire category) if it can be
written as a countable union of closed sets with empty interior.

• A topological space X is Baire if the Baire Category Theorem
holds for X , i.e., the intersection of any sequence of open dense
subsets of X is dense in X .

Clearly, if X is a Baire space, then X is not meager. The reverse
implication is in general not true. However, it holds for every
homogeneous space X (D. Lutzer, R. McCoy, Category in function
spaces).
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Introduction

The Baire property for continuous mappings was first considered in
(G. Vidossich, On topological spaces whose functions space is of
second category, Invent.Math., 8:2 (1969), 111–113).

Then a paper (D. Lutzer, R. McCoy) appeared, where various
aspects of this topic were considered. In (D. Lutzer, R. McCoy,
Category in function spaces.), necessary and, in some cases,
sufficient conditions on a space X were obtained under which the
space Cp(X ) of all continuous real-valued functions C (X ) on a
space X with the topology of pointwise convergence is Baire.
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Introduction

In general, it is not an easy task to characterize when a function
space has the Baire property.
The problem for Ck(X ) was solved for locally compact X by
Gruenhage and Ma.

The problem for Cp(X ) was solved independently by Pytkeev,
Tkachuk and van Douwen.

Theorem (Pytkeev-Tkachuk-van Douwen)

The space Cp(X ) is Baire if and only if every pairwise disjoint
sequence of non-empty finite subsets of X has a strongly discrete
subsequence.

A collection G of subsets of X is discrete if each point of X has a
neighborhood meeting at most one element of G, and is strongly
discrete if for each G ∈ G there is an open superset UG of G such
that {UG : G ∈ G} is discrete.
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Problem Banakh-Gabriyelyan

One of the interesting problems for the space of Baire functions is
the Banakh-Gabriyelyan problem (Problem 1.1 in T. Banakh, S.
Gabriyelyan, Baire category of some Baire type function spaces,
Topology and its Applications, 272 (2020), 107078):

Let α be a countable ordinal. Characterize topological spaces X
and Y for which the function space Bα(X ,Y ) is Baire.
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Theorem. (T. Banakh, S. Gabriyelyan, 2020)

Bα(X ,R) is Baire for any space X and every countable ordinal
α ≥ 2.

B1(X ,R) ?
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Main results

A Gδ-subset of X containing x is called a Gδ neighborhood of x .

Definition
A set A ⊆ X is called strongly Gδ-disjoint, if there is a pairwise
disjoint collection {Fa : Fa is a Gδ neighborhood of a, a ∈ A} such
that {Fa : a ∈ A} is a completely Gδ-additive system, i.e.⋃
b∈B

Fb ∈ Gδ for each B ⊆ A.

A disjoint sequence {∆n : n ∈ N} of (finite) sets is strongly
Gδ-disjoint if the set

⋃
{∆n : n ∈ N} is strongly Gδ-disjoint.



Baire property

Theorem 1.
For a space X the following assertions are equivalent:
1. B1(X ) is meager;
2. there is a pairwise disjoint sequence of non-empty finite subsets
of X no subsequence of which is strongly Gδ-disjoint.



Main results

Since a non-meager space B1(X ) is Baire, we have the following
result.

Theorem 1’.
Let X be a topological space. The following assertions are
equivalent:
1. B1(X ) is Baire;
2. every pairwise disjoint sequence of non-empty finite subsets of X
has a strongly Gδ-disjoint subsequence.

Let B1(X ) be a Baire space and Y ⊆ X . Then B1(Y ) is Baire.



It is well-known that there are Baire spaces X and Y such that
X × Y is not Baire [Ox]. For the product

∏
α∈A

B1(Xα) we have the

following result.

Theorem 2
If B1(Xα) is Baire for all α ∈ A, then

∏
α∈A

B1(Xα) is Baire.



Main results

Theorem 3.
Let X be a space of countable pseudocharacter. A space B1(X ) is
Baire if, and only if, every pairwise disjoint sequence {∆i : i ∈ N}
of non-empty finite subsets of X has a subsequence {∆ik : k ∈ N}
such that

⋃
{∆ik : k ∈ N} is Gδ.

Theorem 4.
If X is metrizable and B1(X ) is a Baire space, then each separable
subset of X without isolated points is meager (of first category) in
itself.

Corollary 1.
If X is metrizable and separable such that B1(X ) is Baire, then X
is meager.
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Let us recall that a cover U of a set X is called
• an ω-cover if each finite set F ⊆ X is contained in some U ∈ U ;
• a γ-cover if for any x ∈ X the set {U ∈ U : x ̸∈ U} is finite.

Definition (Gerlits and Nagy)

A topological space X is called a γ-space if each countable open
ω-cover U of X contains a γ-subcover of X .



Theorem 5.
Let X be a γ-space. Then B1(X ) is Baire.

Corollary 2
Let Cp(X ) be a Fréchet-Urysohn space. Then B1(X ) is Baire.

On the other hand, when X is a Lindelöf scattered space or a
Lindelöf P-space, Cp(X ) has the Fréchet-Urysohn property. Thus,
we get the following corollaries.

Corollary 3
Let X be a scattered Lindelöf space. Then B1(X ) is Baire.

Corollary 4
Let X be a Lindelöf P-space. Then B1(X ) is Baire.
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Choquet property

Both Baire and meager space have game characterizations due to
Oxtoby.
The game GI (X ) is started by the player ONE who selects a
nonempty open set V0 ⊆ X . Then the player TWO responds
selecting a nonempty open set V1 ⊆ V0. At the n-th inning the
player ONE selects a nonempty open set V2n ⊆ V2n−1 and the
player TWO responds selecting a nonempty open set V2n+1 ⊆ V2n.
At the end of the game, the player ONE is declared the winner if⋂
n∈ω

Vn is empty. In the opposite case the player TWO wins the

game GI (X ).

White, 1975, weakly α-favorable spaces
A topological space X is defined to be Choquet if the player TWO
has a winning strategy in the game GI (X ).



Pseudocompleteness for space of Baire-one functions

The sequence {Cn : n ∈ N} is called pseudocomplete if, for any
family {Un : n ∈ N} such that Un+1 ⊆ Un and we have Un ∈ Cn for
each n ∈ N, we have

⋂
{Un : n ∈ N} ≠ ∅.

A space X is called pseudocomplete if there is a pseudocomplete
sequence {Bn : n ∈ N} of π-bases in X .

It is a well-known that any pseudocomplete space is Baire and any
Čech-complete space is pseudocomplete. Note that if X has a
dense pseudocomplete subspace (in particular, if X has a dense
Čech-complete subspace) then X is pseudocomplete.



Pseudocompleteness and Choquet for space of Baire-one
functions

Theorem 7.
For a space X the following assertions are equivalent:
1. B1(X ) is pseudocomplete;
2. B1(X ) is ω-full in RX ;
3. B1(X ) is Gδ-dense in RX ;
4. B1(X ) is Choquet;
5. Every countable subset of X is strongly Gδ-disjoint.



Pseudocompleteness for space of Baire-one functions

Recall that a topological space X is called a λ-space if every
countable subset is of type Gδ in X . A subset X of the real line R is
called a λ-set if each countable subset A ⊂ X is Gδ in R.

Theorem. (T. Banakh, S. Gabriyelyan, 2020)

Let X be a space of countable pseudocharacter. A space B1(X ) is
Choquet if and only if X is a λ-space.

Corollary 4
Let X be a space of countable pseudocharacter. A space B1(X ) is
pseudocomplete if and only if X is a λ-space.
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Let us recall the definition of some small uncountable cardinal.
b = min{|X | : X has a countable pseudocharacter but X is not a
λ-space}.

Proposition 1
Let X be a space of countable pseudocharacter. If |X | < b then
B1(X ) is Choquet (pseudocomplete).



Example 1.
It is consistent with ZFC there is a zero-dimensional metrizable
separable space X such that
1. B1(X ) is not pseudocomplete;
2. B1(X ) is Baire;
3. |X | = b;
4. X is a γ-space;
5. X is not a λ-space.



Let us give several examples of subsets X of the real line R for
which B1(X ) is Baire.

ZFC Examples

(1) B1(Q), where Q is the space of all rational numbers (or any
countable subset of R), is Baire. This is because b is uncountable.

(2) Let X be an uncountable λ-set that is a subset of the real line.
Then B1(X ) is Baire.

Consistent Examples

(3) For any uncountable subset X of the real line of cardinality
< b, B1(X ) is Baire.

(4) Let X be an uncountable γ-set that is a subset of the real line.
Then B1(X ) is Baire.
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Part 2. Cp-theory

• A space X is Fréchet-Urysohn if, for any A ⊆ X and any x ∈ A,
there exists a sequence {an : n ∈ N} ⊆ A that converges to x .

• A space X is called k-Fréchet-Urysohn if, for any open set U ⊂ X
and any point x ∈ U, there exists a sequence {xn : n ∈ N} ⊂ U
that converges to x . Clearly, every Fréchet-Urysohn space is
k-Fréchet-Urysohn.

The class of k-Fréchet-Urysohn spaces was introduced by
Arhangel’skii but, long before that, Mrówka proved (without using
the term) that any product of first countable spaces is
k-Fréchet-Urysohn.



Cp-theory, property (κ)

• A space X is said to have property (κ) if every pairwise disjoint
sequence of finite subsets of X has a strongly point-finite
subsequence.

A family {Aα : α ∈ κ} of subsets of a set X is said to be
point-finite if for every x ∈ X , {α ∈ κ : x ∈ Aα} is finite.
A family {Aα : α ∈ κ} of subsets of a space X is said to be
strongly point-finite if for every α ∈ κ, there exists an open set Uα

of X such that Aα ⊂ Uα and {Uα : α ∈ κ} is point-finite.



Cp-theory, property (κ)

• A space X has the Banakh property if there is a countable family
{An : n ∈ N} of closed nowhere dense subsets of X such that for
any compact subset K of X , there is n ∈ N with K ⊆ An.

• Denote by Ck(X ) the space C (X ) of all real-valued continuous
functions on X endowed with the compact-open topology. X is
called an Ascoli space if every compact subset K of Ck(X ) is evenly
continuous (i.e., if the map (f , x) 7−→ f (x) is continuous as a map
from K × X to R).



Cp-theory, property (κ)

• (Sakai) Cp(X ) is κ-Fréchet-Urysohn iff X has the property (κ).

• (Krupski, Kucharski, Marciszewski) Cp(X ) does not have the
Banakh property if and only if Cp(X ) is κ-Fréchet-Urysohn.

• (Gabriyelyan, Greb́ik, Ka̧kol, and Zdomskyy) The Ascoli property
of Cp(X ) implies that Cp(X ) is κ-Fréchet-Urysohn.

• (Gabriyelyan) The κ-Fréchet-Urysohn property of Cp(X ) implies
that Cp(X ) is Ascoli.

• (Tkachuk) Cp(X ) is κ-Fréchet-Urysohn if and only Cp(X , [0, 1])
is κ-Fréchet-Urysohn.
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• (Tkachuk) Cp(X ) is κ-Fréchet-Urysohn if and only Cp(X , [0, 1])
is κ-Fréchet-Urysohn.



Cp-theory, property (κ)
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• (Gabriyelyan, Greb́ik, Ka̧kol, and Zdomskyy) The Ascoli property
of Cp(X ) implies that Cp(X ) is κ-Fréchet-Urysohn.
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• (Tkachuk) Cp(X ) is κ-Fréchet-Urysohn if and only Cp(X , [0, 1])
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Cp-theory, property (κ)

Theorem 8.
For any space X , the following conditions are equivalent:

1 The space X has the property (κ).
2 The space Cp(X ) is κ-Fréchet-Urysohn.
3 The space Cp(X , [0, 1]) is κ-Fréchet-Urysohn.
4 The space Cp(X ) is Ascoli.
5 The space Cp(X ) does not have the Banakh property.

6 The space B1(X ) is Baire.
7 Every pairwise disjoint sequence of non-empty finite subsets of

X has a strongly Gδ-disjoint subsequence.
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Part 3. Cp-theory

• A family {Aα : α ∈ κ} of subsets of a set X is said to be
point-finite if for every x ∈ X , {α ∈ κ : x ∈ Aα} is finite.

Ka̧kol, Kurka, Leiderman
A space X has the ∆1-property if any disjoint sequence
{An : n ∈ ω} of countable subsets of X has a point-finite open
expansion, i.e., there exists a point-finite family {Un : n ∈ ω} of
open subsets of X such that An ⊂ Un for every n ∈ ω. The spaces
with the ∆1-property are also called ∆1-spaces.



Ka̧kol, Kurka, Leiderman

Below we mention three facts justifying the motivation of our
interest.
(1) The class ∆1 contains properly the subclass consisting of all
λ-spaces. Also, a subset X ⊆ R is ∆1 if and only if X is a λ-set.
We argue that the class ∆1 provides a natural extension of the
family of all λ-sets beyond the separable metrizable spaces.

(2) Any X ∈ ∆1 has property (κ) which is equivalent to the
property that Cp(X ) is κ-Frechet-Urysohn, by the theorem of M.
Sakai.

(3) The class ∆1 is tightly connected to the study of binormality in
non-separable Banach spaces.



Ka̧kol, Kurka, Leiderman

Theorem.
A space X has the ∆1-property if and only if, for any function
f ∈ RX such that f −1(R \ {0}) is countable, there exists a
pointwise bounded set B ⊂ Cp(X ) such that f ∈ B .



Theorem 9.
For a space X , the following conditions are equivalent:

1 X has the ∆1-property.

2 B1(X ) is Choquet.
3 B1(X ) is pseudocomplete.
4 Every countable subset of X is strongly Cozδ-disjoint.
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Solution of open questions

Definition.
Let S = {Sn : n ∈ ω} be a family of subsets of a space X and
x ∈ X . Then S weakly converges to x if for every neighborhood W
of x there is a sequence (sn : n ∈ ω) such that sn ∈ Sn for each
n ∈ ω and there is n′ such that sn ∈ W for each n > n′.

Proposition.(Kakol, Leiderman, Tkachuk, 2024)

If X has no weakly convergent sequences. Then X has the
property (κ).



Solution of open questions

(A. Lipin) If X is a crowded submaximal space, then it has no
weakly convergent sequences.

Corollary

If X is a crowded submaximal space, then X has the property (κ).

This answers in the positive Question 4.10 of (KLT).

Corollary

If X is a crowded submaximal space, then B1(X ) is Baire.

• (Juhász, L. Soukup, Z. Szentmiklóssy), it is proved under ZFC
that for each infinite cardinal κ the Cantor cube D2κ contains a
dense submaximal subspace X with |X | = ∆(X ) = κ.

Thus in the case k = ω there is a countable dense subset in the
Cantor cube Dc which has no weakly convergent sequences.



Solution of open questions

This answers in the positive Question 4.8 of (KLT).

Theorem 10.
There exists in ZFC a separable pseudocompact dense subspace
P ⊂ Dc which is not a ∆1-space but has the property (κ).

This answers in the positive Question 4.7 of (KLT).

Corollary.
There exists in ZFC a separable pseudocompact dense subspace
P ⊂ Dc such that B1(P) is Baire, but B1(P) is not Choquet.
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