Компакты, для которых $C_p(C_p(X))$ линделефово

Е.А.Резниченко

Томск

Содержание

- **1** Когда $C_p(X)$ линделефово для компакта X?
- **2** Когда итерированные $C_{p,n}(X)$ линделефово для компакта X?
- Пространства Соколова
- 4 Компакты Поля-Соколова
- $footnotemark{5}$ Компакты X, для которых $C_{p,2}(X)$ линделефово

Когда $C_p(X)$ линделефово для компакта X?

Theorem 1.1.

Если X компакт Корсона, то $C_p(X)$ линделефово.

Theorem 1.2.

Если X компакт и $X \subset C_p(Y)$, где Y линделефово P, то $C_p(X)$ линделефово и X ω -монолитно.

Theorem 1.3 (М.Асанов, 1979).

Eсли $C_p(X)$ линделефово, то X^n счетной тесноты для всех n.

Theorem 1.4 (Зенор-Величко, 1980).

Если X наследственно сепарабельно в конечных степенях, то $C_p(X)$ наследственно линделефово.

Theorem 1.5 (R.Pol.,1977) (Г.Соколов,1993).

Если X разреженный компакт c пустой ω_1 производной. Тогда $C_p(X)$ линделефово если и только если X ω -монолитно.

Theorem 1.6 (P.,1989).

 $(MA + \neg CH)$ Если X компакт и $C_p(X)$ линделефово, то X ω -монолитно.

Когда итерированные $C_{p,n}(X)$ линделефово для компакта X?

Theorem 2.1 (С.Гулько,1978).

Если X компакт Эберлейна, то $C_{p,n}(X)$ линделефово для всех n.

Theorem 2.2 (С.Гулько,1978).

Eсли X компакт Корсона, то $C_{p,2n+1}(X)$ линделефово и $C_{p,2n}(X)$ нормально для всех n .

Theorem 2.3 (Г.Соколов., 1985).

Если X компакт Корсона, то $C_{p,n}(X)$ линделефово для всех n.

Пространства Соколова

Пространство X называется пространством Cоколова, если для любой последовательности $(F_n)_n$, где F_n замкнуто в X^n , существует непрерывное $r:X\to X$, так что

- (1) $nw(X) \le \omega$;
- (2) $r^n(F_n) \subset F_n$.

Theorem 3.1 (Г.Соколов., 1985, 1993).

Eсли X пространство Cоколова, то $C_p(X)$ пространство Cоколова.

Theorem 3.2 (Г.Соколов., 1985, 1993).

 $Если \ X \ компакт \ Корсона, \ то \ X \ пространство \ Соколова.$

Theorem 3.3 (Г.Соколов., 1985, 1993).

Если X компакт Соколова, то $C_{p,n}(X)$ линделефово для всех n.

Theorem 3.4 (В.Ткачук., 2005).

Eсли X пространство Cоколова и конечные степени X линделефововы со счетной теснотой, то $C_{p,n}(X)$ линделефово для всех n.

Компакты Поля-Соколова

Пусть $S \subset \omega_1$ предельные ординалы и $I \subset \omega_1$ не предельные ординалы — $\omega_1 = S \cup I$.

Зафиксируем $\xi_{\alpha}=(x_{\alpha,n})_n\subset I$ монотонная последовательность, сходящаяся к $\alpha\in S.$

Для $A \subset S$, X_A есть $\omega_1 + 1$ с компактной топологией, в которой ξ_α сходится к $\alpha \in A$, $\{\alpha\} \cap \xi_\alpha$ открыто замкнуто, точки из $\omega_1 \setminus A$ изолированны.

Theorem 4.1 (M.Wage, 1976).

 X_S не компакт Эберлейна.

Theorem 4.2 (R.Pol,1979).

 $C_p(X_S)$ линделефово.

Theorem 4.3 (Г.Соколов.,1993).

 $\Pi y c m b \ A \subset S$.

- ullet X_A компакт Корсона если и только если A не стационарно.
- lacktriangledown X_A компакт Соколова если и только если $\omega_1\setminus A$ стационарно.
- lacktriangledown X_A компакт Соколова не Корсона если и только если A и $\omega_1\setminus A$ стационарны.

Problem 4.4 (Г.Соколов.,1993).

Пусть X компакт и $C_p(X)$ линделефово. Верно ли, что $C_{p,2}(X)=C_p(C_p(X))$ ($C_{p,n}(X)$) линделефово?

- Если дополнительно X разреженный ω -монолитный компакт?
- ullet Компакт вида X_A (A стационарны и $\omega_1 \setminus A$ не стационарно, например A=S)?

Компакты X, для которых $C_{p,2}(X)$ линделефово

Problem 5.1A.Архангельский,1990.

Пусть X компакт и $C_{p,2}(X)$ линделефово. Верно ли, что $C_p(X)$ линделефово?

(*) Любое счетное дискретное замкнутое подмножество $C_p(X)$ C-вложено в $C_p(X)$.

Theorem 5.2.

Пусть X компакт и $C_{p,2}(X)$ линделефово. Если выполняется (*), то $C_p(X)$ линделефово.

Компакт X π -монолитен, то если для любой последовательности $(U_n)_n$ непустых открытых множеств существует метризуемый компакт $K \subset X$, для которого $U_n \cap K \neq \emptyset$ для всех n.

- $f \omega$ -монолитные компакты π -монолитны.
- **2** Произведение π -монолитных компактов π -монолитно.
- lacktriangle Непрерывный образ π -монолитного компакта π -монолитен.
- lacktriangle Диадические компакты π -монолитны.

Theorem 5.3.

Для π -монолитных компактов выполняется (*).

Theorem 5.4.

Пусть X π -монолитный компакт и $C_{p,2}(X)$ линделефово. Тогда $C_p(X)$ линделефово.

Предложение 1.

Пусть X компакт и $C_{p,2}(X)$ линделефово. Если Y замкнуто в X, то $C_{p,2}(Y)$ линделефово.

Предложение 2.

 $\Pi y cm b \ X \ компакт \ u \ C_{p,2}(X)$ линделефово. Следующие условия эквивалентны.

- $m{O}$ $C_p(Y)$ линделефово для любого сепарабельного компакта $Y\subset X$.

Problem 5.5.

Пусть X сепарабельный компакт и $C_{p,2}(X)$ линделефово. Верно ли, что $C_p(X)$ линделефово?

Этот вопрос эквивалентен проблеме Архангельского.

Предложение 3.

Eсли X компакт Mрувки-Избела, то для X не выполняется (*).

Спасибо