Топологические универсальные алгебры: симбиоз алгебры и топологии

О.В. Сипачева

Московский государственный университет им. М.В. Ломоносова

Топологические универсальные алгебры: симбиоз алгебры и топологии

О.В. Сипачева + А.А. Солонков

Московский государственный университет им. М.В. Ломоносова

Универсальная алгебра — множество $A \neq \emptyset$ вместе с произвольным набором операций.

Пример: группа. Операции: 0-арная операция 1 (нейтральный элемент), унарная операция $g\mapsto g^{-1}$, бинарная операция $(g,h)\mapsto g\cdot h$.

Сигнатура — множество Σ (символов операций) вместе с отображением $\nu\colon\sigma\to\omega$, которое каждому символу $\sigma\in\Sigma$ ставит в соответствие арность.

 $\Sigma_n = \nu^{-1}(n)$ — множество символов n-арных операций $\Sigma = \bigcup_{n \in \omega} \Sigma_n$.

Алгебра сигнатуры Σ — непустое множество A вместе с операциями $\sigma^A \colon A^n \to A$ для всех $\sigma \in \Sigma_n$, $n \in \omega$. Обычно вместо σ^A пишут σ .

Пример: группа — алгебра сигнатуры $\Sigma = \{1, ^{-1}, \cdot\}$

Универсальная алгебра — множество $A \neq \emptyset$ вместе с произвольным набором операций.

Пример: группа. Операции: 0-арная операция 1 (нейтральный элемент), унарная операция $g\mapsto g^{-1}$, бинарная операция $(g,h)\mapsto g\cdot h$.

Сигнатура — множество Σ (символов операций) вместе с отображением $\nu\colon\sigma\to\omega$, которое каждому символу $\sigma\in\Sigma$ ставит в соответствие арность.

 $\Sigma_n =
u^{-1}(n)$ — множество символов n-арных операций $\Sigma = \bigcup_{n \in \omega} \Sigma_n$.

Алгебра сигнатуры Σ — непустое множество A вместе с операциями $\sigma^A \colon A^n \to A$ для всех $\sigma \in \Sigma_n$, $n \in \omega$. Обычно вместо σ^A пишут σ .

Пример: группа — алгебра сигнатуры $\Sigma = \{1, ^{-1}, \cdot\}$. В дальнейшем считаем сигнатуру Σ заданной.

Универсальная алгебра — множество $A \neq \emptyset$ вместе с произвольным набором операций.

Пример: группа. Операции: 0-арная операция 1 (нейтральный элемент), унарная операция $g\mapsto g^{-1}$, бинарная операция $(g,h)\mapsto g\cdot h$.

Сигнатура — множество Σ (символов операций) вместе с отображением $\nu \colon \sigma \to \omega$, которое каждому символу $\sigma \in \Sigma$ ставит в соответствие арность.

 $\Sigma_n = \nu^{-1}(n)$ — множество символов n-арных операций. $\Sigma = \bigcup_{n \in \omega} \Sigma_n$.

Алгебра сигнатуры Σ — непустое множество A вместе с операциями $\sigma^A \colon A^n \to A$ для всех $\sigma \in \Sigma_n$, $n \in \omega$. Обычно вместо σ^A пишут σ .

Пример: группа — алгебра сигнатуры $\Sigma = \{1, ^{-1}, \cdot\}$ В дальнейшем считаем сигнатуру Σ заданной.

Универсальная алгебра — множество $A \neq \emptyset$ вместе с произвольным набором операций.

Пример: группа. Операции: 0-арная операция 1 (нейтральный элемент), унарная операция $g\mapsto g^{-1}$, бинарная операция $(g,h)\mapsto g\cdot h$.

Сигнатура — множество Σ (символов операций) вместе с отображением $\nu \colon \sigma \to \omega$, которое каждому символу $\sigma \in \Sigma$ ставит в соответствие арность.

 $\Sigma_n = \nu^{-1}(n)$ — множество символов n-арных операций. $\Sigma = \bigcup_{n \in \omega} \Sigma_n$.

Алгебра сигнатуры Σ — непустое множество A вместе с операциями $\sigma^A \colon A^n \to A$ для всех $\sigma \in \Sigma_n$, $n \in \omega$. Обычно вместо σ^A пишут σ .

Пример: группа — алгебра сигнатуры $\Sigma = \{1, ^{-1}, \cdot\}$.

В дальнейшем считаем сигнатуру Σ заданной

Универсальная алгебра — множество $A \neq \emptyset$ вместе с произвольным набором операций.

Пример: группа. Операции: 0-арная операция 1 (нейтральный элемент), унарная операция $g\mapsto g^{-1}$, бинарная операция $(g,h)\mapsto g\cdot h$.

Сигнатура — множество Σ (символов операций) вместе с отображением $\nu \colon \sigma \to \omega$, которое каждому символу $\sigma \in \Sigma$ ставит в соответствие арность.

$$\Sigma_n = \nu^{-1}(n)$$
 — множество символов n -арных операций. $\Sigma = \bigcup_{n \in \omega} \Sigma_n$.

Алгебра сигнатуры Σ — непустое множество A вместе с операциями $\sigma^A \colon A^n \to A$ для всех $\sigma \in \Sigma_n$, $n \in \omega$. Обычно вместо σ^A пишут σ .

Пример: группа — алгебра сигнатуры $\Sigma = \{1, ^{-1}, \cdot\}$.

В дальнейшем считаем сигнатуру Σ заданной.

Пусть A и $B - \Sigma$ -алгебры.

Отображение $h: A \to B$ — гомоморфизм, если

$$h(\sigma(x_1,\ldots,x_n))=\sigma(h(x_1),\ldots,h(x_n))$$

для всех $\sigma \in \Sigma_n$, $n \in \omega$.

Ядро гомоморфизма:

$$\ker h = \{(x, y) \in A \times A : h(x) = h(y)\}.$$

Это отношение эквивалентности \sim на A, причём

$$x_1 \sim y_1, \ldots, x_n \sim y_n \Rightarrow \sigma(x_1, \ldots, x_n) \sim \sigma(y_1, \ldots, y_n)$$

для $\sigma \in \Sigma_n$, $n \in \omega$.

... Такие отношения называются <mark>конгруэнциями</mark>.

Если B = h(A), то $B \cong A/\sim -$ факторалгебра:

$$\sigma(\lceil x_1 \rceil_{\sim}, \ldots, \lceil x_n \rceil_{\sim}) = \lceil \sigma(x_1, \ldots, x_n) \rceil_{\sim}$$

B является подалгеброй алгебры A, если

$$\sigma(b_1,\ldots,b_n)\in B \quad \forall n\in\omega, b_1,\ldots,b_n\in B, \sigma\in\Sigma_n.$$

Алгебра A порождена множеством $X \subset A$, если любая её подалгебра, содержащая X, совпадает с A.

- $t \in \Sigma_0$;
- \bullet $x \in X$;
- $\sigma(t_1, t_2, ..., t_n)$, где $\sigma \in \Sigma_n$ и $t_1, ..., t_n$ термы.

Терм \equiv упорядоченный набор символов из X и Σ .

Глубина терма — число символов операций в его записи. Для $n \in \omega$ $T_n(X)$ — множество Σ -термов глубины n. $T(X) = \bigcup_{n \in \omega} T_n(X)$ — множество всех Σ -термов.

 $T(X) - \Sigma$ -алгебра. Это абсолютно свободная алгебра сигнатуры Σ с базой X. Её удобно представить так:

$$W_0(X) = X \cup \Sigma_0 \qquad W_1(X) = \bigcup_{j>0} \bigcup_{\sigma \in \Sigma_j} W_0(X)^j_{\sigma}$$

$$W_n(X) = \bigcup_{j>0} \bigcup_{\sigma \in \Sigma_j} (W_{k_1}(X) \times \cdots \times W_{k_j}(X))^j_{\sigma}$$

$$W(X) = \bigcup_{n \in \mathcal{U}} W_n(X).$$

Для $\sigma \in \Sigma_n$ и $t_i \in W_{k_i}$ $\sigma(t_1, \ldots, t_n) = (t_1, \ldots, t_n)_{\sigma}$

- $t \in \Sigma_0$;
- \bullet $x \in X$;
- $\sigma(t_1, t_2, ..., t_n)$, где $\sigma \in \Sigma_n$ и $t_1, ..., t_n$ термы.

Терм \equiv упорядоченный набор символов из X и Σ .

Глубина терма — число символов операций в его записи. Для $n \in \omega$ $T_n(X)$ — множество Σ -термов глубины n. $T(X) = \bigcup_{n \in \omega} T_n(X)$ — множество всех Σ -термов.

 $T(X) - \Sigma$ -алгебра. Это абсолютно свободная алгебра сигнатуры Σ с базой X. Её удобно представить так:

$$= \bigcup_{j>0} \bigcup_{\max k_j = n-1} \bigcup_{\sigma \in \Sigma_j} (W_{k_1}(X) \times \cdots \times W_{k_j}(X))_{\sigma}$$

$$W(X) = \bigcup_{n \in \mathbb{N}} W_n(X).$$

Для $\sigma \in \Sigma_n$ и $t_i \in W_{k_i}$ $\sigma(t_1, \ldots, t_n) = (t_1, \ldots, t_n)_{\sigma}$.

- $t \in \Sigma_0$;
- *x* ∈ *X*;
- $\sigma(t_1, t_2, ..., t_n)$, где $\sigma \in \Sigma_n$ и $t_1, ..., t_n$ термы.

Терм \equiv упорядоченный набор символов из X и Σ .

Глубина терма — число символов операций в его записи. Для $n \in \omega$ $T_n(X)$ — множество Σ -термов глубины n. $T(X) = \bigcup_{n \in \omega} T_n(X)$ — множество всех Σ -термов.

 $T(X) - \Sigma$ -алгебра. Это абсолютно свободная алгебра сигнатуры Σ с базой X. Её удобно представить так:

$$W_0(X) = X \cup \Sigma_0 \qquad W_1(X) = \bigcup_{j>0} \bigcup_{\sigma \in \Sigma_j} W_0(X)_{\sigma}^{j}$$

$$V_n(X) = \bigcup \bigcup (W_{k_1}(X) \times \cdots \times W_{k_j}(X))$$

,

$$W(X) = \bigcup_{n \in \mathbb{N}} W_n(X).$$

Для $\sigma \in \Sigma_n$ и $t_i \in W_{k_i}$ $\sigma(t_1, \ldots, t_n) = (t_1, \ldots, t_n)_{\sigma}$.

- $t \in \Sigma_0$;
 - $x \in X$;
 - \bullet $\sigma(t_1, t_2, ..., t_n)$, где $\sigma \in \Sigma_n$ и $t_1, ..., t_n$ термы.

Терм \equiv упорядоченный набор символов из X и Σ .

Глубина терма — число символов операций в его записи. Для $n \in \omega$ $T_n(X)$ — множество Σ -термов глубины n. $T(X) = \bigcup_{n \in \omega} T_n(X)$ — множество всех Σ -термов.

 $T(X) - \Sigma$ -алгебра. Это абсолютно свободная алгебра сигнатуры Σ с базой X. Её удобно представить так:

$$W_0(X) = X \cup \Sigma_0$$
 $W_1(X) = \bigcup_{j>0} \bigcup_{\sigma \in \Sigma_j} W_0(X)^j_{\sigma}$

$$W_n(X) = \bigcup_{j>0} \bigcup_{\max k_i = n-1} \bigcup_{\sigma \in \Sigma_j} (W_{k_1}(X) \times \cdots \times W_{k_j}(X))_{\sigma}$$

$$W(X) = \bigcup_{n \in I} W_n(X).$$

Для
$$\sigma \in \Sigma_n$$
 и $t_i \in W_{k_i}$ $\sigma(t_1, \ldots, t_n) = (t_1, \ldots, t_n)_{\sigma}$.

Тождество — формула вида

$$\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_k (t(x_1, \ldots, x_n) = s(y_1, \ldots, y_n)),$$

где t и s — термы. По традиции кванторы опускаются. Тождество $t(x_1,\ldots,x_n)=s(y_1,\ldots,y_n)$ выполнено в алгебре A, если оно превращается в верное равенство при подстановке любых элементов алгебры A вместо символов переменных x_i и y_j .

Определение

Класс \mathscr{K} Σ -алгебр называется многообразием Σ -алгебр, если

- $A_{\iota} \in \mathcal{K}$ для $\iota \in I \Rightarrow \prod_{\iota \in I} \in \mathcal{K}$;
- $A \in \mathcal{K}$, B подалгебра алгебры $A \Rightarrow B \in \mathcal{K}$;
- $A \in \mathcal{K}$, $h: A \xrightarrow{\mathsf{Hd}} B$ гомоморфизм $\Rightarrow B \in \mathcal{K}$

Teopeмa (Birkhoff)

Класс \mathcal{K} Σ -алгебр является многообразием \Leftrightarrow существует набор тождеств такой, что \mathcal{K} состоит из всех Σ -алгебр, в которых выполнены все тождества из этого набора.

Тождество — формула вида

$$\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_k (t(x_1, \ldots, x_n) = s(y_1, \ldots, y_n)),$$

где t и s — термы. По традиции кванторы опускаются. Тождество $t(x_1,\ldots,x_n)=s(y_1,\ldots,y_n)$ выполнено в алгебре A, если оно превращается в верное равенство при подстановке любых элементов алгебры A вместо символов переменных x_i и y_j .

Определение

Класс \mathscr{K} Σ -алгебр называется многообразием Σ -алгебр, если

- $A_{\iota} \in \mathscr{K}$ для $\iota \in I \Rightarrow \prod_{\iota \in I} \in \mathscr{K}$;
- $A \in \mathcal{K}$, B подалгебра алгебры $A \Rightarrow B \in \mathcal{K}$;
- $A \in \mathcal{K}$, $h: A \xrightarrow{\mathsf{Ha}} B$ гомоморфизм $\Rightarrow B \in \mathcal{K}$.

Теорема (Birkhoff)

Класс \mathcal{K} Σ -алгебр является многообразием \Leftrightarrow существует набор тождеств такой, что \mathcal{K} состоит из всех Σ -алгебр, в которых выполнены все тождества из этого набора.

Тождество — формула вида

$$\forall x_1 \ldots \forall x_n \forall y_1 \ldots \forall y_k (t(x_1, \ldots, x_n) = s(y_1, \ldots, y_n)),$$

где t и s — термы. По традиции кванторы опускаются. Тождество $t(x_1,\ldots,x_n)=s(y_1,\ldots,y_n)$ выполнено в алгебре A, если оно превращается в верное равенство при подстановке любых элементов алгебры A вместо символов переменных x_i и y_j .

Определение

Класс \mathscr{K} Σ -алгебр называется многообразием Σ -алгебр, если

- $A_{\iota} \in \mathscr{K}$ для $\iota \in I \Rightarrow \prod_{\iota \in I} \in \mathscr{K}$;
- $A \in \mathcal{K}$, B подалгебра алгебры $A \Rightarrow B \in \mathcal{K}$;
- $A \in \mathcal{K}$, $h: A \xrightarrow{\mathsf{Ha}} B$ гомоморфизм $\Rightarrow B \in \mathcal{K}$.

Teopeмa (Birkhoff)

Класс \mathscr{K} Σ -алгебр является многообразием \Leftrightarrow существует набор тождеств такой, что \mathscr{K} состоит из всех Σ -алгебр, в которых выполнены все тождества из этого набора.

Пусть X — множество, $\mathscr V$ — многообразие Σ -алгебр. Свободной алгеброй над X в $\mathscr V$ называется алгебра $F_\mathscr V(X) \in \mathscr V$ со свойствами:

- ullet X содержится в алгебре $F_{\mathscr{V}}(X)$ и порождает её;
- любое отображение из X в любую алгебру $A \in \mathscr{V}$ продолжается до гомоморфизма алгебры $F_{\mathscr{V}}(X)$ в A.

Класс \mathscr{W} всех Σ -алгебр — многообразие. Свободная алгебра над X в \mathscr{W} — это W(X). Действительно, пусть A — Σ -алгебра и $f: X \to A$ — любое отображение. Положим

$$\hat{f_0}(x) = f(x)$$
 для $x \in X$, $f_0(\sigma) = \sigma^A \in A$ для $\sigma \in \Sigma_0$,

$$\hat{f}_nig((t_1,\ldots,t_j)_\sigmaig)=\sigmaig(\hat{f}_{k_1}(t_1),\ldots,\hat{f}_{k_j}(t_j)ig)$$
 для $(t_1,\ldots,t_j)_\sigma\in W_n(X)$

$$\hat{f} = \bigcup_{n \in \omega} \hat{f}_n$$

 $\hat{f}:W(X)\to A$ — гомоморфизм.

Пусть X — множество, $\mathscr V$ — многообразие Σ -алгебр. Свободной алгеброй над X в $\mathscr V$ называется алгебра $F_{\mathscr V}(X) \in \mathscr V$ со свойствами:

- X содержится в алгебре $F_{\mathscr{V}}(X)$ и порождает её;
- любое отображение из X в любую алгебру $A \in \mathscr{V}$ продолжается до гомоморфизма алгебры $F_{\mathscr{V}}(X)$ в A.

Класс \mathscr{W} всех Σ -алгебр — многообразие. Свободная алгебра над X в \mathscr{W} — это W(X). Действительно, пусть A — Σ -алгебра и $f: X \to A$ — любое отображение. Положим

$$\hat{f_0}(x) = f(x)$$
 для $x \in X$, $f_0(\sigma) = \sigma^A \in A$ для $\sigma \in \Sigma_0$,

$$\hat{f}_nig((t_1,\ldots,t_j)_\sigmaig) = \sigmaig(\hat{f}_{k_1}(t_1),\ldots,\hat{f}_{k_j}(t_j)ig)$$
 для $(t_1,\ldots,t_j)_\sigma\in W_n(X)$,

$$\hat{f} = \bigcup_{n \in \mathcal{U}} \hat{f}_n$$
.

$$\hat{f}:W(X)\to A$$
 — гомоморфизм.

Замечание

Для любого многообразия $\mathscr V$ любая алгебра $A\in \mathscr V$ является факторалгеброй свободной алгебры $F_{\mathscr V}(X)$ для некоторого X.

Пусть \sim_1 и \sim_2 — отношения эквивалентности на множестве X. Композиция \sim_1 \circ \sim_2 :

$$x \sim_1 \circ \sim_2 y \Leftrightarrow \exists z \in X(x \sim_1 z \land z \sim_2 y).$$

Композиция $\sim_1 \circ \sim_2$ является отношением эквивалентности $\Leftrightarrow \sim_1 \circ \sim_2 = \sim_2 \circ \sim_1.$

Определение

Многообразие \mathscr{V} называется конгруэнц-перестановочным, если $\sim_1 \circ \sim_2 = \sim_2 \circ \sim_1$ для любых конгруэнций \sim_1 и \sim_2 на любой алгебре $A \in \mathscr{V}$.

Замечание

Для любого многообразия $\mathscr V$ любая алгебра $A\in \mathscr V$ является факторалгеброй свободной алгебры $F_{\mathscr V}(X)$ для некоторого X.

Пусть \sim_1 и \sim_2 — отношения эквивалентности на множестве X. Композиция \sim_1 \circ \sim_2 :

$$x \sim_1 \circ \sim_2 y \Leftrightarrow \exists z \in X(x \sim_1 z \land z \sim_2 y).$$

Композиция $\sim_1 \circ \sim_2$ является отношением эквивалентности $\Leftrightarrow \sim_1 \circ \sim_2 = \sim_2 \circ \sim_1$.

Определение

Многообразие \mathscr{V} называется конгруэнц-перестановочным, если $\sim_1 \circ \sim_2 = \sim_2 \circ \sim_1$ для любых конгруэнций \sim_1 и \sim_2 на любой алгебре $A \in \mathscr{V}$.

Многообразие \mathscr{V} Σ -алгебр конгруэнц-перестановочно \Leftrightarrow существует Σ -терм $\mu(x,y,z)$ такой, что в любой алгебре $A \in \mathscr{V}$ выполнены тождества

$$\mu(x,y,y)=x\quad u\quad \mu(x,x,y)=y. \tag{*}$$

Доказательство

 \bigcirc Положим $X = \{a, b, c\}$, $a \neq b \neq c \neq a$.

Пусть $\sim_1^X (\sim_2^X)$ — отношение эквивалентности на X, которое склеивает a и b (b и c). \sim_i^X продолжается до конгруэнции \sim_i на $F_{\mathscr{V}}(X)$.

 $a \sim_1 \circ \sim_2 c$, конгруэнции перестановочны $\Rightarrow \exists d \in F_{\psi}(X)$ $a \sim_2 d \sim_1 c$. Имеем $d = \mu(a, b, c) \in T(X)$.

 \sim_1 — конгруэнция $\Rightarrow \mu(a, b, c) \sim_1 \mu(a, a, c) \Rightarrow a \sim_1 \mu(a, c, c)$. Пусть $A \in \mathcal{V}$ и $x, y \in A$. Отображение $f : X \to A$, определённое правилом f(a) = f(b) = x, f(c) = y, продолжается до гомоморфизма $\hat{f} : F_{\mathcal{V}}(X) \to A$. Поскольку $\sim_1^X \subset \ker \hat{f}$, имеем $\sim_1 \subset \ker \hat{f}$. Значит

 $\mu(x,y,y) = \mu(\hat{f}(a),\hat{f}(c),\hat{f}(c)) = \hat{f}(\mu(a,c,c)) = \hat{f}(a) = x$ в A. Из аналогичных соображений $\mu(x,x,y) = y$ в A.

Многообразие \mathscr{V} Σ -алгебр конгруэнц-перестановочно \Leftrightarrow существует Σ -терм $\mu(x,y,z)$ такой, что в любой алгебре $A \in \mathscr{V}$ выполнены тождества

$$\mu(x, y, y) = x$$
 $\mu(x, x, y) = y$. (*)

Доказательство

 \bigcirc Положим $X = \{a, b, c\}, a \neq b \neq c \neq a$.

Пусть $\sim_1^X (\sim_2^X)$ — отношение эквивалентности на X, которое склеивает a и b (b и c). \sim_i^X продолжается до конгруэнции \sim_i на $F_{\mathscr{V}}(X)$.

 $a \sim_1 \circ \sim_2 c$, конгруэнции перестановочны ⇒ $\exists d \in F_{\mathscr{V}}(X)$: $a \sim_2 d \sim_1 c$. Имеем $d = \mu(a, b, c) \in T(X)$.

 \sim_1 — конгруэнция $\Rightarrow \mu(a,b,c) \sim_1 \mu(a,a,c) \Rightarrow a \sim_1 \mu(a,c,c)$. Пусть $A \in \mathscr{V}$ и $x,y \in A$. Отображение $f: X \to A$, определённое правилом f(a) = f(b) = x, f(c) = y, продолжается до гомоморфизма $\hat{f}: F_{\mathscr{V}}(X) \to A$. Поскольку $\sim_1^X \subset \ker \hat{f}$, имеем $\sim_1 \subset \ker \hat{f}$. Значит,

 $\mu(x,y,y) = \mu(\hat{f}(a),\hat{f}(c),\hat{f}(c)) = \hat{f}(\mu(a,c,c)) = \hat{f}(a) = \lambda$ в A. Из аналогичных соображений $\mu(x,x,y) = y$ в A.

Многообразие \mathscr{V} Σ -алгебр конгруэнц-перестановочно \Leftrightarrow существует Σ -терм $\mu(x,y,z)$ такой, что в любой алгебре $A \in \mathscr{V}$ выполнены тождества

$$\mu(x, y, y) = x$$
 $\mu(x, x, y) = y$. (*)

Доказательство

 \bigcirc Положим $X = \{a, b, c\}, a \neq b \neq c \neq a.$

Пусть $\sim_1^X (\sim_2^X)$ — отношение эквивалентности на X, которое склеивает a и b (b и c). \sim_i^X продолжается до конгруэнции \sim_i на $F_{\mathscr{V}}(X)$.

 $a \sim_1 \circ \sim_2 c$, конгруэнции перестановочны $\Rightarrow \exists d \in F_{\mathscr{V}}(X)$: $a \sim_2 d \sim_1 c$. Имеем $d = \mu(a, b, c) \in \mathcal{T}(X)$.

 \sim_1 — конгруэнция $\Rightarrow \mu(a,b,c) \sim_1 \mu(a,a,c) \Rightarrow a \sim_1 \mu(a,c,c)$. Пусть $A \in \mathcal{V}$ и $x,y \in A$. Отображение $f: X \to A$, определённое правилом f(a) = f(b) = x, f(c) = y, продолжается до гомоморфизма $\hat{f}: F_{\mathcal{V}}(X) \to A$. Поскольку $\sim_1^X \subset \ker \hat{f}$, имеем $\sim_1 \subset \ker \hat{f}$. Значит,

$$\mu(x,y,y) = \mu(\hat{f}(a),\hat{f}(c),\hat{f}(c)) = \hat{f}(\mu(a,c,c)) = \hat{f}(a) = x$$
 в A . Из аналогичных соображений $\mu(x,x,y) = y$ в A .

Многообразие \mathscr{V} Σ -алгебр конгруэнц-перестановочно \Leftrightarrow существует Σ -терм $\mu(x,y,z)$ такой, что в любой алгебре $A \in \mathscr{V}$ выполнены тождества

$$\mu(x,y,y)=x \quad \text{if} \quad \mu(x,x,y)=y. \tag{*}$$

Доказательство

 \bigcirc Положим $X = \{a, b, c\}, a \neq b \neq c \neq a.$

Пусть $\sim_1^X (\sim_2^X)$ — отношение эквивалентности на X, которое склеивает a и b (b и c). \sim_i^X продолжается до конгруэнции \sim_i на $F_{\mathscr{V}}(X)$.

 $a \sim_1 \circ \sim_2 c$, конгруэнции перестановочны $\Rightarrow \exists d \in F_{\mathscr{V}}(X)$: $a \sim_2 d \sim_1 c$. Имеем $d = \mu(a, b, c) \in \mathcal{T}(X)$.

 \sim_1 — конгруэнция $\Rightarrow \mu(a, b, c) \sim_1 \mu(a, a, c) \Rightarrow a \sim_1 \mu(a, c, c)$.

Пусть $A \in \mathscr{V}$ и $x, y \in A$. Отображение $f: X \to A$, определённое правилом f(a) = f(b) = x, f(c) = y, продолжается до гомоморфизма $\hat{f}: F_{\mathscr{V}}(X) \to A$. Поскольку $\sim_1^X \subset \ker \hat{f}$, имеем $\sim_1 \subset \ker \hat{f}$. Значит.

 $\mu(x,y,y) = \mu(\hat{f}(a),\hat{f}(c),\hat{f}(c)) = \hat{f}(\mu(a,c,c)) = \hat{f}(a) = x$ в A. Из аналогичных соображений $\mu(x,x,y) = y$ в A.

Определение

Терм, удовлетворяющий тождествам (*) в данном многообразии, называется мальцевским термом. Операция $\mu\colon X^3\to X$, для которой выполнены равенства (*) при любых $x,y,z\in X$, называется операцией Мальцева.

Примеры

- **1** Группа: $\mu(x, y, z) = x \cdot y^{-1} \cdot z$.
- Левая лупа: две бинарные операции * и \ и одна 0-арная операция е, тождества:

$$x*(x \setminus y) = y, \qquad x \setminus (x*y) = y, \qquad x*e = x.$$

пльцевский терм: $\mu(x,y,z) = x*(y \setminus z).$

$$X^3 = \Pi_1 \cup \Pi_2,$$
 $\{(x,y,y)\} \subset \Pi_1, \quad \{(x,x,y)\} \subset \Pi_2, \quad \Pi_1 \cap \Pi_2 \subset \{(x,y,x)\},$ $\mu(x,y,z) = \begin{cases} x, & \text{если } (x,y,z) \in \Pi_1, \\ z, & \text{если } (x,y,z) \in \Pi_2. \end{cases}$

Определение

Терм, удовлетворяющий тождествам (*) в данном многообразии, называется мальцевским термом. Операция $\mu\colon X^3\to X$, для которой выполнены равенства (*) при любых $x,y,z\in X$, называется операцией Мальцева.

Примеры

- **1** Группа: $\mu(x, y, z) = x \cdot y^{-1} \cdot z$.
- Левая лупа: две бинарные операции * и \ и одна 0-арная операция е, тождества:

$$x*(x \setminus y) = y, \qquad x \setminus (x*y) = y, \qquad x*e = x.$$

Лальцевский терм: $\mu(x,y,z) = x*(y \setminus z).$

③ $X^3 = \Pi_1 \cup \Pi_2$, $\{(x,y,y)\} \subset \Pi_1$, $\{(x,x,y)\} \subset \Pi_2$, $\Pi_1 \cap \Pi_2 \subset \{(x,y,x)\}$, $\mu(x,y,z) = \begin{cases} x, & \text{если } (x,y,z) \in \Pi_1, \\ z, & \text{если } (x,y,z) \in \Pi_2. \end{cases}$

Определение

Терм, удовлетворяющий тождествам (*) в данном многообразии, называется мальцевским термом. Операция $\mu\colon X^3\to X$, для которой выполнены равенства (*) при любых $x,y,z\in X$, называется операцией Мальцева.

Примеры

- ② Левая лупа: две бинарные операции * и \times и одна 0-арная операция e, тождества:

$$x*(x \setminus y) = y$$
, $x \setminus (x*y) = y$, $x*e = x$.

мальцевский терм: $\mu(x, y, z) = x * (y)$

$$\{(x,y,y)\} \subset \Pi_1, \quad \{(x,x,y)\} \subset \Pi_2, \quad \Pi_1 \cap \Pi_2 \subset \{(x,y,x)\},$$

$$\mu(x,y,z) = \begin{cases} x, & \text{если } (x,y,z) \in \Pi_1, \\ z, & \text{если } (x,y,z) \in \Pi_2. \end{cases}$$

Определение

Терм, удовлетворяющий тождествам (*) в данном многообразии, называется мальцевским термом. Операция $\mu\colon X^3\to X$, для которой выполнены равенства (*) при любых $x,y,z\in X$, называется операцией Мальцева.

Примеры

- ② Левая лупа: две бинарные операции * и \setminus и одна 0-арная операция e, тождества:

$$x*(x \setminus y) = y, \qquad x \setminus (x*y) = y, \qquad x*e = x.$$
 Мальцевский терм: $\mu(x,y,z) = x*(y \setminus z).$

 $X^3 = \Pi_1 \cup \Pi_2, \\ \{(x,y,y)\} \subset \Pi_1, \quad \{(x,x,y)\} \subset \Pi_2, \quad \Pi_1 \cap \Pi_2 \subset \{(x,y,x)\}, \\ \mu(x,y,z) = \begin{cases} x, & \text{если } (x,y,z) \in \Pi_1, \\ z, & \text{если } (x,y,z) \in \Pi_2. \end{cases}$

Определение

Терм, удовлетворяющий тождествам (*) в данном многообразии, называется мальцевским термом. Операция $\mu\colon X^3\to X$, для которой выполнены равенства (*) при любых $x,y,z\in X$, называется операцией Мальцева.

Примеры

- ② Левая лупа: две бинарные операции * и \setminus и одна 0-арная операция e, тождества:

$$x*(x \setminus y) = y, \qquad x \setminus (x*y) = y, \qquad x*e = x.$$
 Мальцевский терм: $\mu(x,y,z) = x*(y \setminus z).$

③ $X^3 = \Pi_1 \cup \Pi_2$, $\{(x,y,y)\} \subset \Pi_1$, $\{(x,x,y)\} \subset \Pi_2$, $\Pi_1 \cap \Pi_2 \subset \{(x,y,x)\}$, $\mu(x,y,z) = \begin{cases} x, & \text{если } (x,y,z) \in \Pi_1, \\ z, & \text{если } (x,y,z) \in \Pi_2. \end{cases}$

Топологическая универсальная алгебра — это универсальная алгебра с топологией, относительно которой все операции непрерывны.

Определение

Класс \mathscr{K} топологических алгебр называется многообразием топологических алгебр, если

- $A_{\iota} \in \mathcal{K}$ для $\iota \in I \Rightarrow \prod_{\iota \in I} \in \mathcal{K}$;
- $A \in \mathcal{K}$, B подалгебра алгебры $A \Rightarrow B \in \mathcal{K}$;
- $A \in \mathcal{K}$, $h: A \xrightarrow{\mathsf{Ha}} B$ факторный гомоморфизм и B топологическая алгебра $\Rightarrow B \in \mathcal{K}$.

Определение

Полное многообразие топологических алгебр — класс всех топологических универсальных алгебр одной и той же сигнатуры, в которых выполнены все тождества из заданного набора тождеств.

Топологическая универсальная алгебра — это универсальная алгебра с топологией, относительно которой все операции непрерывны.

Определение

Класс \mathscr{K} топологических алгебр называется многообразием топологических алгебр, если

- $A_{\iota} \in \mathcal{K}$ для $\iota \in I \Rightarrow \prod_{\iota \in I} \in \mathcal{K}$;
- $A \in \mathcal{K}$, B подалгебра алгебры $A \Rightarrow B \in \mathcal{K}$;
- $A \in \mathcal{K}$, $h: A \xrightarrow{\mathsf{Ha}} B$ факторный гомоморфизм и B топологическая алгебра $\Rightarrow B \in \mathcal{K}$.

Определение

Полное многообразие топологических алгебр — класс всех топологических универсальных алгебр одной и той же сигнатуры, в которых выполнены все тождества из заданного набора тождеств.

Пусть X — топологическое пространство и \mathscr{V} — многообразие топологических алгебр. Свободной топологической алгеброй пространства X в многообразии \mathscr{V} называется алгебра $F_{\mathscr{V}}(X) \in \mathscr{V}$ вместе с непрерывным отображением $i_X \colon X \to F_{\mathscr{V}}(X)$, удовлетворяющая условиям:

- множество $i_X(X)$ порождает алгебру $F_{\mathscr{V}}(X)$;
- для любого непрерывного отображения $f: X \to A \in \mathscr{V}$ существует непрерывный гомоморфизм $\hat{f}: F_{\mathscr{V}}(X) \to A$ такой, что $f = \hat{f} \circ i_X$.

Теорема (Мальцев, ..

В любом многообразии топологических алгебр существует свободная топологическая алгебра любого топологического пространства, причём она единственна с точностью до топологического изоморфизма.

Пусть X — топологическое пространство и \mathscr{V} — многообразие топологических алгебр. Свободной топологической алгеброй пространства X в многообразии \mathscr{V} называется алгебра $F_{\mathscr{V}}(X) \in \mathscr{V}$ вместе с непрерывным отображением $i_X \colon X \to F_{\mathscr{V}}(X)$, удовлетворяющая условиям:

- множество $i_X(X)$ порождает алгебру $F_{\mathscr{V}}(X)$;
- для любого непрерывного отображения $f: X \to A \in \mathscr{V}$ существует непрерывный гомоморфизм $\hat{f}: F_{\mathscr{V}}(X) \to A$ такой, что $f = \hat{f} \circ i_X$.

Теорема (Мальцев, ...)

В любом многообразии топологических алгебр существует свободная топологическая алгебра любого топологического пространства, причём она единственна с точностью до топологического изоморфизма.

Теорема (Walter Taylor)

 $\mathscr V$ — многообразие топологических алгебр, $A\in\mathscr V\Rightarrow\overline A$ с антидискретной топологией принадлежит многообразию $\mathscr V$.

Доказательство. Рассмотрим множество $C \subset A^{\omega}$, состоящее из всех стабилизирующихся последовательностей. $A \in \mathscr{V} \Rightarrow A^{\omega} \in \mathscr{V}$. C - подалгебра алгебры $A^{\omega} \Rightarrow C \in \mathscr{V}$. Пусть $h: C \to \overline{A}$ — гомоморфизм, который каждой последовательности из C ставит в соответствие то постоянное значение, которое эта последовательность принимает начиная C некоторого момента. Это гомоморфизм. Он открыт относительно антидискретной топологии на \overline{A} .

Следствие

Teopeмa (Walter Taylor)

 $\mathscr V$ — многообразие топологических алгебр, $A\in\mathscr V\Rightarrow\overline A$ с антидискретной топологией принадлежит многообразию $\mathscr V$.

Доказательство. Рассмотрим множество $C \subset A^{\omega}$, состоящее из всех стабилизирующихся последовательностей. $A \in \mathcal{V} \Rightarrow A^{\omega} \in \mathcal{V}$. $C \leftarrow$ подалгебра алгебры $A^{\omega} \Rightarrow C \in \mathcal{V}$. Пусть $h: C \to \overline{A} \leftarrow$ гомоморфизм, который каждой последовательности из C ставит в соответствие то постоянное значение, которое эта последовательность принимает начиная C некоторого момента. Это гомоморфизм. Он открыт относительно антидискретной топологии на \overline{A} .

Следствие

Teopeмa (Walter Taylor)

 \mathscr{V} — многообразие топологических алгебр, $A \in \mathscr{V} \Rightarrow \overline{A}$ с антидискретной топологией принадлежит многообразию \mathscr{V} .

Доказательство. Рассмотрим множество $C \subset A^\omega$, состоящее из всех стабилизирующихся последовательностей. $A \in \mathscr{V} \Rightarrow A^\omega \in \mathscr{V}. C$ — подалгебра алгебры $A^\omega \Rightarrow C \in \mathscr{V}.$ Пусть $h: C \to \overline{A}$ — гомоморфизм, который каждой последовательности из C ставит в соответствие то постоянное значение, которое эта последовательность принимает начиная с некоторого момента. Это гомоморфизм. Он открыт относительно антидискретной топологии на $\overline{A}.$

Следствие

Teopeмa (Walter Taylor)

 \mathscr{V} — многообразие топологических алгебр, $A \in \mathscr{V} \Rightarrow \overline{A}$ с антидискретной топологией принадлежит многообразию \mathscr{V} .

Доказательство. Рассмотрим множество $C \subset A^{\omega}$, состоящее из всех стабилизирующихся последовательностей. $A \in \mathscr{V} \Rightarrow A^{\omega} \in \mathscr{V}. C$ — подалгебра алгебры $A^{\omega} \Rightarrow C \in \mathscr{V}.$ Пусть $h: C \to \overline{A}$ — гомоморфизм, который каждой последовательности из C ставит в соответствие то постоянное значение, которое эта последовательность принимает начиная с некоторого момента. Это гомоморфизм. Он открыт относительно антидискретной топологии на \overline{A} .

Следствие

Для любого нетривиального многообразия топологических алгебр $\mathscr V$ и любого топологического пространства X отображение $i_X\colon X\to F_\mathscr V$ инъективно и алгебра $\overline{F_\mathscr V}(X)$ изоморфна абстрактной свободной алгебре множества X.

Можно считать, что X содержится в $F_{\mathscr{V}}(X)$ как множество (но индуцированная на нём из $F_{\mathscr{V}}(X)$ топология может оказаться слабее топологии пространства X).

Предложение

Топология свободной топологической алгебры $F_{\psi}(X)$ — самая сильная из всех топологий, относительно которых все операции непрерывны и которые индуцируют на X топологию, содержащуюся в топологии пространства X.

Следствие

$$X \in T_{3\frac{1}{2}} \Rightarrow X$$
 гомеоморфно вложено в $F_{\mathscr{V}}(X)$.

Для любого нетривиального многообразия топологических алгебр $\mathscr V$ и любого топологического пространства X отображение $i_X\colon X\to F_\mathscr V$ инъективно и алгебра $\overline{F_\mathscr V}(X)$ изоморфна абстрактной свободной алгебре множества X.

Можно считать, что X содержится в $F_{\mathscr{V}}(X)$ как множество (но индуцированная на нём из $F_{\mathscr{V}}(X)$ топология может оказаться слабее топологии пространства X).

Предложение

Топология свободной топологической алгебры $F_{\psi}(X)$ — самая сильная из всех топологий, относительно которых все операции непрерывны и которые индуцируют на X топологию, содержащуюся в топологии пространства X.

Следствие

$$X \in T_{3\frac{1}{2}} \Rightarrow X$$
 гомеоморфно вложено в $F_{\mathscr{V}}(X)$.

Для любого нетривиального многообразия топологических алгебр $\mathscr V$ и любого топологического пространства X отображение $i_X\colon X\to F_\mathscr V$ инъективно и алгебра $\overline{F_\mathscr V}(X)$ изоморфна абстрактной свободной алгебре множества X.

Можно считать, что X содержится в $F_{\mathscr{V}}(X)$ как множество (но индуцированная на нём из $F_{\mathscr{V}}(X)$ топология может оказаться слабее топологии пространства X).

Предложение

Топология свободной топологической алгебры $F_{\psi}(X)$ — самая сильная из всех топологий, относительно которых все операции непрерывны и которые индуцируют на X топологию, содержащуюся в топологии пространства X.

Следствие

 $X \in T_{3\frac{1}{2}} \Rightarrow X$ гомеоморфно вложено в $F_{\mathscr{V}}(X)$.

Для любого нетривиального многообразия топологических алгебр $\mathscr V$ и любого топологического пространства X отображение $i_X\colon X\to F_\mathscr V$ инъективно и алгебра $F_\mathscr V(X)$ изоморфна абстрактной свободной алгебре множества X.

Можно считать, что X содержится в $F_{\mathscr{V}}(X)$ как множество (но индуцированная на нём из $F_{\mathscr{V}}(X)$ топология может оказаться слабее топологии пространства X).

Предложение

Топология свободной топологической алгебры $F_{\psi}(X)$ — самая сильная из всех топологий, относительно которых все операции непрерывны и которые индуцируют на X топологию, содержащуюся в топологии пространства X.

Следствие

$$X \in T_{3\frac{1}{2}} \Rightarrow X$$
 гомеоморфно вложено в $F_{\mathscr{V}}(X)$.

Предложение

 $X \in T_0$, на X есть непрерывная операция Мальцева $\Rightarrow X \in T_2$.

Доказательство. Пусть $x,y\in X,\ U\subset X$ открыто, $x\in U$ и $y\notin U$. Тогда $\mu(x,y,y)\in U\Rightarrow$ существуют открытые $V\ni x$ и $W\ni y$, для которых $\mu(V\times W\times W)\subset U$. Для $z\in V\cap W$ имеем $(z,z,y)\in V\times W\times W\Rightarrow y=\mu(z,z,y)\in U$. Противоречие. \square

Следствие

Пусть \mathscr{V} — многообразие топологических алгебр с мальцевским термом. Если $X \in T_0$ и $X \notin T_2$, то $X \notin F_{\mathscr{V}}(X)$.

Конгруэнции \sim_1 и \sim_2 *п*-перестановочны, если $\sim_1 \circ \sim_2 \circ \ldots = \sim_2 \circ \sim_1 \circ \ldots (n \text{ знаков } \circ).$

Надетапп, Mitchke: Многообразие \mathscr{V} п-перестановочно \iff существуют тернарные производные операции p_0, p_1, \ldots, p_n , удовлетворяющие тождествам $p_0(x, y, z) = x, \ldots, p_i(x, x, y) = p_{i+1}(x, y, y), \ldots, p_n(x, y, z) = z.$

Teopeмa (Coleman, 1997)

Многообразие топологических алгебр $\mathcal V$ n-перестановочно для некоторого $n \Leftrightarrow \forall A \in \mathcal V \ A \in T_0 \Rightarrow A \in T_1$.

Предложение

 $X \in T_0$, на X есть непрерывная операция Мальцева $\Rightarrow X \in T_2$.

Доказательство. Пусть $x,y\in X,\ U\subset X$ открыто, $x\in U$ и $y\notin U$. Тогда $\mu(x,y,y)\in U\Rightarrow$ существуют открытые $V\ni x$ и $W\ni y$, для которых $\mu(V\times W\times W)\subset U$. Для $z\in V\cap W$ имеем $(z,z,y)\in V\times W\times W\Rightarrow y=\mu(z,z,y)\in U$. Противоречие. \square

Следствие

Пусть \mathscr{V} — многообразие топологических алгебр с мальцевским термом. Если $X \in T_0$ и $X \notin T_2$, то $X \notin F_{\mathscr{V}}(X)$.

Конгруэнции \sim_1 и \sim_2 *п*-перестановочны, если $\sim_1 \circ \sim_2 \circ \ldots = \sim_2 \circ \sim_1 \circ \ldots (n \text{ знаков } \circ).$

Надетапп, Mitchke: Многообразие \mathscr{V} n-перестановочно \iff существуют тернарные производные операции p_0, p_1, \ldots, p_n , удовлетворяющие тождествам $p_0(x, y, z) = x, \ldots, p_i(x, x, y) = p_{i+1}(x, y, y), \ldots p_n(x, y, z) = z.$

Теорема (Coleman, 1997)

Многообразие топологических алгебр $\mathscr V$ n-перестановочно для некоторого $n \Leftrightarrow \forall A \in \mathscr V \ A \in T_0 \Rightarrow A \in T_1$.

Teopeмa (Keith Kearnes + Luís Sequeira, 2002)

Пусть \mathscr{P} — топологическое свойство, $[\mathscr{P}]$ — «класс» многообразий \mathscr{V} абстрактных алгебр таких, что $\forall A \in \mathscr{V}$ существует согласованная с операциями топология \mathscr{T} на A, для которой $(A,\mathscr{T}) \in \mathscr{P}$. Если свойство \mathscr{P} сохраняется конечными произведениями, а свойство $\neg \mathscr{P}$ сохраняется ультрапроизведениями, то $[\mathscr{P}]$ определяется мальцевскими условиями (существование термов, для которых выполнены данные тождества во всех алгебрах, принадлежащих многообразиям \mathscr{V} из $[\mathscr{P}]$).

Следствие

Существует мальцевское условие, выполнение которого в многообразии $\mathscr V$ топологических алгебр равносильно тому, что для любой алгебры $A \in \mathscr V$ $A \in T_0 \Rightarrow A \in T_2$. То же верно для $A \in T_0 \Rightarrow A \in T_{2\frac{1}{2}}$ и $A \in T_0 \Rightarrow A \in T_3$.

Для T_4 это тоже верно, так как в любом нетривиальном многообразии топологических алгебр есть $A \in T_0$, $A \notin T_4$. Для $T_{3\frac{1}{n}}$ вопрос открыт.

Вопрос: Пусть A — топологическая Σ -алгебра, $h: A \to B$ — факторный гомоморфизм. Верно ли, что B — тоже топологическая Σ -алгебра (операции непрерывны)?

Ответ: Вообще говоря, нет.

Пример: Пусть $\Sigma = \{1, ^{-1}, \cdot\}$, и пусть $W(\mathbb{Q})$ — абсолютно свободная топологическая Σ -алгебра пространства \mathbb{Q} рациональных чисел. Тогда

$$W_0(X) = X \oplus \Sigma_0$$
 $W_1(X) = \bigoplus_{j>0} \bigoplus_{\sigma \in \Sigma_j} W_0(X)^j_{\sigma}$

$$W_n(X) = \bigoplus_{i>0} \bigoplus_{\max k:=n-1} \bigoplus_{\sigma \in \Sigma} (W_{k_1}(X) \times \cdots \times W_{k_j}(X))_{\sigma}$$

$$W(X) = \bigoplus W_n(X)$$

 $(\Sigma_0$ снабжено дискретной топологией)

Вопрос: Пусть A — топологическая Σ -алгебра, $h: A \to B$ — факторный гомоморфизм. Верно ли, что B — тоже топологическая Σ -алгебра (операции непрерывны)? Ответ: Вообще говоря, нет.

Пример: Пусть $\Sigma = \{1, ^{-1}, \cdot\}$, и пусть $W(\mathbb{Q})$ — абсолютно свободная топологическая Σ -алгебра пространства \mathbb{Q} рациональных чисел. Тогда

$$W_0(X) = X \oplus \Sigma_0 \qquad W_1(X) = \bigoplus_{j>0} \bigoplus_{\sigma \in \Sigma_j} W_0(X)_{\sigma}^{j}$$

$$W_n(X) = \bigoplus_{j>0} \bigoplus_{\max k_j = n-1} \bigoplus_{\sigma \in \Sigma_j} (W_{k_1}(X) \times \cdots \times W_{k_j}(X))$$

$$W(X) = \bigoplus_{n \in \mathcal{U}} W_n(X)$$

 $(\Sigma_0$ снабжено дискретной топологией).

Вопрос: Пусть A — топологическая Σ -алгебра, $h: A \to B$ — факторный гомоморфизм. Верно ли, что B — тоже топологическая Σ -алгебра (операции непрерывны)?

Пример: Пусть $\Sigma = \{1, ^{-1}, \cdot\}$, и пусть $W(\mathbb{Q})$ — абсолютно свободная топологическая Σ -алгебра пространства \mathbb{Q} рациональных чисел. Тогда

$$W_0(X) = X \oplus \Sigma_0 \qquad W_1(X) = \bigoplus_{j>0} \bigoplus_{\sigma \in \Sigma_j} W_0(X)_{\sigma}^j$$

$$W_n(X) = \bigoplus_{j>0} \bigoplus_{\max k_i = n-1} \bigoplus_{\sigma \in \Sigma_j} (W_{k_1}(X) \times \cdots \times W_{k_j}(X))_{\sigma}$$

$$\cdots$$

$$W(X) = \bigoplus_{n \in \omega} W_n(X)$$

 $(\Sigma_0$ снабжено дискретной топологией).

Ответ: Вообще говоря, нет.

Вопрос: Пусть A — топологическая Σ -алгебра, $h: A \to B$ — факторный гомоморфизм. Верно ли, что B — тоже топологическая Σ -алгебра (операции непрерывны)?

Пример: Пусть $\Sigma = \{1, ^{-1}, \cdot\}$, и пусть $W(\mathbb{Q})$ — абсолютно свободная топологическая Σ -алгебра пространства \mathbb{Q} рациональных чисел. Тогда

$$W_0(X) = X \oplus \Sigma_0 \qquad W_1(X) = \bigoplus_{j>0} \bigoplus_{\sigma \in \Sigma_j} W_0(X)_{\sigma}^j$$

$$W_n(X) = \bigoplus_{j>0} \bigoplus_{\max k_i = n-1} \bigoplus_{\sigma \in \Sigma_j} (W_{k_1}(X) \times \cdots \times W_{k_j}(X))_{\sigma}$$

$$\cdots$$

$$W(X) = \bigoplus_{n \in \omega} W_n(X)$$

 $(\Sigma_0$ снабжено дискретной топологией).

Ответ: Вообще говоря, нет.

Теорема (Мальцев + Taylor)

Пусть \mathscr{V} — полное многообразие топологических алгебр. Для любой алгебры $A \in \mathscr{V}$, любой конгруэнции \sim на A и любого открытого множества $U \subset A$ \sim -насыщение

$$[U]_{\sim} = \{x \in A : \exists u \in U(u \sim x)\}$$

открыто \iff в $\mathscr V$ имеется мальцевский терм.

Следствие

Пусть \mathscr{V} — полное многообразие топологических алгебр с мальцевским термом.

- ① Если $A \in \mathcal{V}$, $B \in \overline{\mathcal{V}}$ и $h: A \to B$ гомоморфизм, то B с фактортопологией топологическая алгебра (из \mathcal{V}).
- ② Для любой алгебры $A \in \mathcal{V}$ и любой конгруэнции \sim на A определена топологическая факторалгебра A/\sim (и $A/\sim\in\mathcal{V}$).
- ③ Любой факторный гомоморфизм $h: A \to B$ из $A \in \mathcal{V}$ на $B \in \mathcal{V}$ открыт.

Теорема (Мальцев + Taylor)

Пусть \mathscr{V} — полное многообразие топологических алгебр. Для любой алгебры $A \in \mathscr{V}$, любой конгруэнции \sim на A и любого открытого множества $U \subset A$ \sim -насыщение

$$[U]_{\sim} = \{x \in A : \exists u \in U(u \sim x)\}$$

открыто \iff в $\mathscr V$ имеется мальцевский терм.

Следствие

Пусть \mathscr{V} — полное многообразие топологических алгебр с мальцевским термом.

- **①** Если $A \in \mathcal{V}$, $B \in \overline{\mathcal{V}}$ и $h: A \to B$ гомоморфизм, то B с фактортопологией топологическая алгебра (из \mathcal{V}).
- ② Для любой алгебры $A \in \mathcal{V}$ и любой конгруэнции \sim на A определена топологическая факторалгебра A/\sim (и $A/\sim\in\mathcal{V}$).
- ③ Любой факторный гомоморфизм $h: A \to B$ из $A \in \mathcal{V}$ на $B \in \mathcal{V}$ открыт.

Ответ: Нет

Пример: Пусть $\Sigma=\Sigma_1,\ A\in\mathcal{V},\ \overline{B}\in\overline{\mathcal{V}},\ h\colon A o\overline{B}$ — гомоморфизм и B — алгебра \overline{B} с фактортопологией. Для $\sigma\in\Sigma$ имеем коммутативную диаграмму

$$\begin{array}{ccc}
A & \xrightarrow{\sigma^A} & A \\
\downarrow^h & & \downarrow^h \\
B & \xrightarrow{\sigma^B} & B
\end{array}$$

h факторно, σ^A непрерывно $\Rightarrow \sigma^B$ непрерывно.

Теорема

 \mathscr{V} — полное многообразие топологических алгебр, \mathscr{V} регулярно (определяется тождествами с одинаковым набором переменных справа и слева) \Rightarrow для любого X $F_{\mathscr{V}}(X)$ имеет топологию индуктивного предела.

Ответ: Нет.

Пример: Пусть $\Sigma = \Sigma_1$, $A \in \mathcal{V}$, $\overline{B} \in \overline{\mathcal{V}}$, $h: A \to \overline{B}$ — гомоморфизм и B — алгебра \overline{B} с фактортопологией. Для $\sigma \in \Sigma$ имеем коммутативную диаграмму

$$\begin{array}{ccc}
A & \xrightarrow{\sigma^A} & A \\
\downarrow^h & & \downarrow^h \\
B & \xrightarrow{\sigma^B} & B
\end{array}$$

h факторно, σ^A непрерывно $\Rightarrow \sigma^B$ непрерывно.

Теорема

 \mathscr{V} — полное многообразие топологических алгебр, $\overline{\mathscr{V}}$ регулярно (определяется тождествами с одинаковым набором переменных справа и слева) \Rightarrow для любого X $F_{\mathscr{V}}(X)$ имеет топологию индуктивного предела.

Ответ: Нет.

Пример: Пусть $\Sigma = \Sigma_1$, $A \in \mathcal{V}$, $\overline{B} \in \overline{\mathcal{V}}$, $h: A \to \overline{B}$ — гомоморфизм и B — алгебра \overline{B} с фактортопологией. Для $\sigma \in \Sigma$ имеем коммутативную диаграмму

$$\begin{array}{ccc}
A & \xrightarrow{\sigma^A} & A \\
\downarrow^h & & \downarrow^h \\
B & \xrightarrow{\sigma^B} & B
\end{array}$$

h факторно, σ^A непрерывно $\Rightarrow \sigma^B$ непрерывно.

Теорема

 \mathscr{V} — полное многообразие топологических алгебр, \mathscr{V} регулярно (определяется тождествами с одинаковым набором переменных справа и слева) \Rightarrow для любого X $F_{\mathscr{V}}(X)$ имеет топологию индуктивного предела.

Ответ: Нет.

Пример: Пусть $\Sigma = \Sigma_1$, $A \in \mathcal{V}$, $\overline{B} \in \overline{\mathcal{V}}$, $h: A \to \overline{B}$ — гомоморфизм и B — алгебра \overline{B} с фактортопологией. Для $\sigma \in \Sigma$ имеем коммутативную диаграмму

$$\begin{array}{ccc}
A & \xrightarrow{\sigma^A} & A \\
\downarrow^h & & \downarrow^h \\
B & \xrightarrow{\sigma^B} & B
\end{array}$$

h факторно, σ^A непрерывно $\Rightarrow \sigma^B$ непрерывно.

Теорема

 \mathscr{V} — полное многообразие топологических алгебр, $\overline{\mathscr{V}}$ регулярно (определяется тождествами с одинаковым набором переменных справа и слева) \Rightarrow для любого X $F_{\mathscr{V}}(X)$ имеет топологию индуктивного предела.

Квазитопологическая универсальная алгебра — это универсальная алгебра с топологией, относительно которой все операции раздельно непрерывны.

Кросс-произведение $X\otimes Y$ — это $X\times Y$ с кросс-топологией: множество $U\subset X\otimes Y$ открыто $\Leftrightarrow \forall (x,y)\in U$ сечение $U\cap (\{x\}\times Y)$ открыто в $\{x\}\times Y$ и сечение $U\cap (X\times \{y\})$ открыто в $X\times \{y\}$.

Отображение $f: X \times Y \to Z$ раздельно непрерывно \Leftrightarrow $f: X \otimes Y \to Z$ непрерывно.

Отображения $f_i\colon X_i\to Y_i$ факторны (непрерывны) $\Leftrightarrow f_1\otimes f_2\colon X_1\otimes X_2\to Y_1\times Y_2$ факторно (непрерывно). Следовательно, раздельная непрерывность операций сохраняется факторными гомоморфизмами:

$$\begin{array}{ccc}
A \otimes \cdots \otimes A & \xrightarrow{\sigma^A} & A \\
h \otimes \cdots \otimes h & & \downarrow h \otimes \cdots \otimes h \\
B \otimes \cdots \otimes B & \xrightarrow{\sigma^B} & B
\end{array}$$

Квазитопологическая универсальная алгебра — это универсальная алгебра с топологией, относительно которой все операции раздельно непрерывны.

Кросс-произведение $X\otimes Y$ — это $X\times Y$ с кросс-топологией: множество $U\subset X\otimes Y$ открыто $\Leftrightarrow \forall (x,y)\in U$ сечение $U\cap (\{x\}\times Y)$ открыто в $\{x\}\times Y$ и сечение $U\cap (X\times \{y\})$ открыто в $X\times \{y\}$.

Отображение $f: X \times Y \to Z$ раздельно непрерывно \Leftrightarrow $f: X \otimes Y \to Z$ непрерывно.

Отображения $f_i\colon X_i\to Y_i$ факторны (непрерывны) $\Leftrightarrow f_1\otimes f_2\colon X_1\otimes X_2\to Y_1\times Y_2$ факторно (непрерывно). Следовательно, раздельная непрерывность операций сохраняется факторными гомоморфизмами:

$$\begin{array}{ccc}
A \otimes \cdots \otimes A & \xrightarrow{\sigma^A} & A \\
h \otimes \cdots \otimes h & & \downarrow h \otimes \cdots \otimes h \\
B \otimes \cdots \otimes B & \xrightarrow{\sigma^B} & B
\end{array}$$

Квазитопологическая универсальная алгебра — это универсальная алгебра с топологией, относительно которой все операции раздельно непрерывны.

Кросс-произведение $X\otimes Y$ — это $X\times Y$ с кросс-топологией: множество $U\subset X\otimes Y$ открыто $\Leftrightarrow \forall (x,y)\in U$ сечение $U\cap (\{x\}\times Y)$ открыто в $\{x\}\times Y$ и сечение $U\cap (X\times \{y\})$ открыто в $X\times \{y\}$.

Отображение $f: X \times Y \to Z$ раздельно непрерывно \Leftrightarrow $f: X \otimes Y \to Z$ непрерывно.

Отображения $f_i\colon X_i \to Y_i$ факторны (непрерывны) $\Leftrightarrow f_1\otimes f_2\colon X_1\otimes X_2 \to Y_1\times Y_2$ факторно (непрерывно). Следовательно, раздельная непрерывность операций сохраняется факторными гомоморфизмами:

$$\begin{array}{ccc}
A \otimes \cdots \otimes A & \xrightarrow{\sigma^A} & A \\
\downarrow^{h \otimes \cdots \otimes h} & & \downarrow^{h \otimes \cdots \otimes h} \\
B \otimes \cdots \otimes B & \xrightarrow{\sigma^B} & B
\end{array}$$

Класс ${\mathscr K}$ квазитопологических алгебр называется многообразием квазитопологических алгебр, если

- ullet $A_\iota \in \mathscr{K}$ для $\iota \in I \Rightarrow \prod_{\iota \in I} \in \mathscr{K}$;
- $A \in \mathcal{K}$, B подалгебра алгебры $A \Rightarrow B \in \mathcal{K}$;
- $A \in \mathcal{K}$ и $h: A \xrightarrow{\mathsf{Ha}} B$ факторный гомоморфизм $\Rightarrow B \in \mathcal{K}$.

Определение

Пусть X — топологическое пространство и $\mathscr V$ — многообразие квазитопологических алгебр. Свободной квазитопологической алгеброй пространства X в многообразии $\mathscr V$ называется алгебра $F^q_\mathscr V(X)\in\mathscr V$ вместе с непрерывным отображением $i_X\colon X\to F_\mathscr V(X)$, удовлетворяющая условиям:

- множество $i_X(X)$ порождает алгебру $F_{\mathscr{V}}(X)$;
- для любого непрерывного отображения $f: X \to A \in \mathscr{V}$ существует непрерывный гомоморфизм $\hat{f}: F_{\mathscr{V}}(X) \to A$ такой, что $f = \hat{f} \circ i_X$.

- **1** В любом многообразии $\mathscr V$ квазитопологических алгебр для любого топологического пространства X существует свободная квазитопологическая алгебра $F^q_{\mathscr V}(X)$.
- **2** $F_{\mathscr{V}}^{q}(X)$ единственна (с точностью до топологического изоморфизма).
- $\overline{\mathscr{V}}$ многообразие абстрактных алгебр и $\overline{F_{\mathscr{V}}^q(X)}$ изоморфна абстрактной свободной алгебре $F_{\mathscr{V}}(X)$ множества X.
- **©** Если \mathscr{V} нетривиально, то отображение i_X инъективно.
- ⑤ Любая алгебра $A \in \mathcal{V}$, порождённая подпространством $X \subset A$, является топологической факторалгеброй свободной алгебры $F^q_{\mathcal{V}}(X)$ (и абсолютно свободной квазитопологической алгебры $W^q(X)$).
- Алгебра $F^q_{\mathscr{V}}(X)$ всегда имеет топологию индуктивного предела относительно разложения $F^q_{\mathscr{V}}(X) = \bigcup_{n \in \omega} F^q_{\mathscr{V},n}(X)$, где $F^q_{\mathscr{V},n}(X) = h(W^q_n(X))$ (здесь $h \colon W^q(X) \to F^q_{\mathscr{V}}(X)$ естественный факторный гомоморфизм).

Любое непустое топологическое пространство с раздельно непрерывной операцией Мальцева является ретрактом квазитопологической группы.

Теорема

Пусть X и Y — непустые топологические пространства с раздельно непрерывными операциями Мальцева μ_X и μ_Y , и пусть $h\colon X \to Y$ — факторное отображение со свойством

$$h(\mu_X(x,y,z)) = \mu_Y(h(x),h(y),h(z)) \quad \forall x,y,x \in X$$

Тогда h открыто.

Замечание

Композиция раздельно непрерывных операций не всегда раздельно непрерывна. Пример: группа невырожденных вещественных матриц размера 2×2 с топологией, состоящей из дополнений до конечных множеств. Операции $(A,B) \mapsto A \cdot B$ и $A \to A^{-1}$ раздельно непрерывны, $(A,B) \mapsto A^{-1} \cdot B \cdot A$ не раздельно непрерывна $A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$, $A = \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix}$.

Любое непустое топологическое пространство с раздельно непрерывной операцией Мальцева является ретрактом квазитопологической группы.

Теорема

Пусть X и Y — непустые топологические пространства c раздельно непрерывными операциями Мальцева μ_X и μ_Y , и пусть $h: X \to Y$ — факторное отображение со свойством $h(\mu_X(x,y,z)) = \mu_Y(h(x),h(y),h(z))$ $\forall x,y,x \in X$.

$$n(\mu_X(x,y,z)) = \mu_Y(n(x),n(y),n(z)) \qquad \forall x,y,x \in X$$

Тогда h открыто.

Замечание

Композиция раздельно непрерывных операций не всегда раздельно непрерывна. Пример: группа невырожденных вещественных матриц размера 2×2 с топологией, состоящей из дополнений до конечных множеств. Операции $(A,B) \mapsto A \cdot B$ и $A \to A^{-1}$ раздельно непрерывны, $(A,B) \mapsto A^{-1} \cdot B \cdot A$ не раздельно непрерывна $(A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix})$, $B = \begin{pmatrix} \frac{1}{a} & \frac{1}{a} & \frac{1}{a} \end{pmatrix}$

Любое непустое топологическое пространство с раздельно непрерывной операцией Мальцева является ретрактом квазитопологической группы.

Теорема

Пусть X и Y — непустые топологические пространства с раздельно непрерывными операциями Мальцева μ_X и μ_Y , и пусть $h\colon X \to Y$ — факторное отображение со свойством

$$h(\mu_X(x,y,z)) = \mu_Y(h(x),h(y),h(z)) \quad \forall x,y,x \in X.$$

Тогда h открыто.

Замечание

Композиция раздельно непрерывных операций не всегда раздельно непрерывна. Пример: группа невырожденных вещественных матриц размера 2×2 с топологией, состоящей из дополнений до конечных множеств. Операции $(A,B) \mapsto A \cdot B$ и $A \to A^{-1}$ раздельно непрерывны, $(A,B) \mapsto A^{-1} \cdot B \cdot A$ не раздельно непрерывна $(A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix})$, $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Общий вопрос 2: При каких условиях на многообразие квазитопологических алгебр всякий факторный гомоморфизм алгебр в этом многообразии открыт?

Общий вопрос 3: Существует ли мальцевское условие на многообразие топологических алгебр, равносильное тому, что топологическая факторалгебра любой топологической алгебры из этого многообразия является топологической алгеброй?

Общий вопрос 2: При каких условиях на многообразие квазитопологических алгебр всякий факторный гомоморфизм алгебр в этом многообразии открыт?

Общий вопрос 3: Существует ли мальцевское условие на многообразие топологических алгебр, равносильное тому, что топологическая факторалгебра любой топологической алгебры из этого многообразия является топологической алгеброй?

Общий вопрос 2: При каких условиях на многообразие квазитопологических алгебр всякий факторный гомоморфизм алгебр в этом многообразии открыт?

Общий вопрос 3: Существует ли мальцевское условие на многообразие топологических алгебр, равносильное тому, что топологическая факторалгебра любой топологической алгебры из этого многообразия является топологической алгеброй?

Общий вопрос 2: При каких условиях на многообразие квазитопологических алгебр всякий факторный гомоморфизм алгебр в этом многообразии открыт?

Общий вопрос 3: Существует ли мальцевское условие на многообразие топологических алгебр, равносильное тому, что топологическая факторалгебра любой топологической алгебры из этого многообразия является топологической алгеброй?

СПАСИБО